Files
vllm-dev/vllm/_ipex_ops.py
2025-08-06 19:28:11 -07:00

352 lines
12 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from typing import Optional
import torch
from vllm.logger import init_logger
logger = init_logger(__name__)
try:
import intel_extension_for_pytorch as ipex
except ImportError as e:
logger.warning("Import error msg: %s", e.msg)
class ipex_ops:
@staticmethod
def _reshape_activation_tensor(
x: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
num = x.size(0)
d = x.size(1) // 2
x = x.reshape(num, 2, d)
x1, x2 = torch.chunk(x, chunks=2, dim=1)
x1 = x1.reshape(num, d)
x2 = x2.reshape(num, d)
return x1, x2
@staticmethod
def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
ipex.llm.functional.silu_and_mul(x, out)
@staticmethod
def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
ipex.llm.functional.gelu_and_mul(x, out)
@staticmethod
def gelu_tanh_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
ipex.llm.functional.gelu_and_mul(x, out)
@staticmethod
def gelu_fast(x: torch.Tensor) -> torch.Tensor:
return torch.nn.functional.gelu(x)
@staticmethod
def gelu_new(x: torch.Tensor) -> torch.Tensor:
return torch.nn.functional.gelu(x)
@staticmethod
def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
ipex.llm.functional.gelu_quick(x, out)
@staticmethod
def paged_attention_v1(
out: torch.Tensor,
query: torch.Tensor,
key_cache: torch.Tensor,
value_cache: torch.Tensor,
num_kv_heads: int,
scale: float,
block_tables: torch.Tensor,
context_lens: torch.Tensor,
block_size: int,
max_context_len: int,
alibi_slopes: Optional[torch.Tensor],
kv_cache_dtype: str,
k_scale: float,
v_scale: float,
tp_rank: int = 0,
blocksparse_local_blocks: int = 0,
blocksparse_vert_stride: int = 0,
blocksparse_block_size: int = 64,
blocksparse_head_sliding_step: int = 0,
) -> None:
assert kv_cache_dtype == "auto"
num_heads = out.size(1)
num_queries_per_tokens = num_heads // num_kv_heads
ipex.llm.modules.PagedAttention.single_query_kv_attention(
out,
query.contiguous(),
key_cache.view_as(value_cache),
value_cache,
num_queries_per_tokens,
scale,
block_tables,
context_lens,
block_size,
max_context_len,
alibi_slopes,
)
@staticmethod
def paged_attention_v2(
out: torch.Tensor,
exp_sum: torch.Tensor,
max_logits: torch.Tensor,
tmp_out: torch.Tensor,
query: torch.Tensor,
key_cache: torch.Tensor,
value_cache: torch.Tensor,
num_kv_heads: int,
scale: float,
block_tables: torch.Tensor,
context_lens: torch.Tensor,
block_size: int,
max_context_len: int,
alibi_slopes: Optional[torch.Tensor],
kv_cache_dtype: str,
k_scale: float,
v_scale: float,
tp_rank: int = 0,
blocksparse_local_blocks: int = 0,
blocksparse_vert_stride: int = 0,
blocksparse_block_size: int = 64,
blocksparse_head_sliding_step: int = 0,
) -> None:
assert kv_cache_dtype == "auto"
num_heads = out.size(1)
num_queries_per_tokens = num_heads // num_kv_heads
ipex.llm.modules.PagedAttention.single_query_kv_attention(
out,
query.contiguous(),
key_cache.view_as(value_cache),
value_cache,
num_queries_per_tokens,
scale,
block_tables,
context_lens,
block_size,
max_context_len,
alibi_slopes,
)
@staticmethod
def rotary_embedding(
positions: torch.Tensor, # [batch_size, seq_len]
query: torch.Tensor, # [batch_size, seq_len, num_heads*head_size]
key: torch.Tensor, # [batch_size, seq_len, num_kv_heads*head_size]
head_size: int,
cos_sin_cache: torch.Tensor, # [cos_sin_dim, rot_dim]
is_neox: bool,
) -> None:
rot_dim = cos_sin_cache.size(1)
ipex.llm.functional.rotary_embedding_batched(positions, query, key,
head_size, cos_sin_cache,
is_neox, rot_dim)
@staticmethod
def batched_rotary_embedding(positions: torch.Tensor, query: torch.Tensor,
key: torch.Tensor, head_size: int,
cos_sin_cache: torch.Tensor, is_neox: bool,
rot_dim: int,
cos_sin_cache_offsets: torch.Tensor) -> None:
ipex.llm.functional.rotary_embedding_batched(positions, query, key,
head_size, cos_sin_cache,
is_neox, rot_dim,
cos_sin_cache_offsets)
@staticmethod
def rms_norm(input: torch.Tensor, weight: torch.Tensor,
epsilon: float) -> torch.Tensor:
return ipex.llm.functional.rms_norm(input, weight, epsilon)
@staticmethod
def fused_add_rms_norm(input: torch.Tensor, residual: torch.Tensor,
weight: torch.Tensor, epsilon: float) -> None:
tmp = ipex.llm.functional.add_rms_norm(residual, input, weight, None,
epsilon, True)
input.copy_(tmp)
@staticmethod
def varlen_attention(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
out: torch.Tensor,
seqlen_q: torch.Tensor,
seqlen_k: torch.Tensor,
alibi_slopes: Optional[torch.Tensor],
max_seqlen_q: int,
max_seqlen_k: int,
pdropout: float,
softmax_scale: float,
zero_tensors: bool,
is_causal: bool,
return_softmax: bool,
gen_: torch.Generator,
window_size_left: float,
window_size_right: float,
logits_soft_cap: float,
) -> None:
if ipex.__version__.endswith("cpu"):
if logits_soft_cap != 0.0:
raise ValueError("IPEX CPU does not support logits_soft_cap")
assert alibi_slopes is None
assert window_size_left < 0 and window_size_right < 0
ipex.llm.functional.varlen_attention(query.contiguous(),
key.contiguous(),
value.contiguous(), out,
seqlen_q.int(),
seqlen_k.int(), max_seqlen_q,
max_seqlen_k, pdropout,
softmax_scale, zero_tensors,
is_causal, return_softmax,
gen_)
else: # XPU build
ipex.llm.functional.varlen_attention(
query.contiguous(), key.contiguous(), value.contiguous(), out,
seqlen_q.int(), seqlen_k.int(), alibi_slopes, max_seqlen_q,
max_seqlen_k, pdropout, softmax_scale, zero_tensors, is_causal,
return_softmax, gen_, window_size_left, window_size_right,
logits_soft_cap)
@staticmethod
def reshape_and_cache(
key: torch.Tensor,
value: torch.Tensor,
key_cache: torch.Tensor,
value_cache: torch.Tensor,
slot_mapping: torch.Tensor,
kv_cache_dtype: str,
k_scale: float,
v_scale: float,
) -> None:
assert kv_cache_dtype == "auto"
ipex.llm.modules.PagedAttention.reshape_and_cache(
key, value, key_cache, value_cache, slot_mapping)
@staticmethod
def reshape_and_cache_flash(
key: torch.Tensor,
value: torch.Tensor,
key_cache: torch.Tensor,
value_cache: torch.Tensor,
slot_mapping: torch.Tensor,
kv_cache_dtype: str,
k_scale: Optional[torch.Tensor] = None,
v_scale: Optional[torch.Tensor] = None,
k_scale_float: float = 1.0,
v_scale_float: float = 1.0,
) -> None:
assert kv_cache_dtype == "auto"
# TODO: support FP8 kv cache.
ipex.llm.modules.PagedAttention.reshape_and_cache_flash(
key, value, key_cache, value_cache, slot_mapping)
@staticmethod
def flash_attn_varlen_func(
out: torch.Tensor,
q: torch.Tensor,
k: torch.Tensor,
v: torch.Tensor,
cu_seqlens_q: torch.Tensor,
seqused_k: torch.Tensor, # we don't support this in ipex kernel
max_seqlen_q: int,
max_seqlen_k: int,
softmax_scale: float,
causal: bool,
block_table: torch.Tensor,
alibi_slopes: Optional[torch.Tensor],
window_size: Optional[list[int]] = None,
softcap: Optional[float] = 0.0,
cu_seqlens_k: Optional[torch.Tensor] = None,
# The following parameters are not used in ipex kernel currently,
# we keep API compatible to CUDA's.
scheduler_metadata=None,
fa_version: int = 2,
q_descale=None,
k_descale=None,
v_descale=None,
num_splits=0,
s_aux: Optional[torch.Tensor] = None,
):
if cu_seqlens_k is None:
# cu_seqlens_k is not used in ipex kernel.
cu_seqlens_k = torch.cumsum(seqused_k, dim=0)
cu_seqlens_k = torch.cat([
torch.tensor([0], device=seqused_k.device, dtype=torch.int32),
cu_seqlens_k
]).to(torch.int32)
real_window_size: tuple[int, int]
if window_size is None:
real_window_size = (-1, -1)
else:
assert len(window_size) == 2
real_window_size = (window_size[0], window_size[1])
return ipex.llm.modules.PagedAttention.flash_attn_varlen_func(
out,
q.contiguous(),
k,
v,
cu_seqlens_q,
cu_seqlens_k,
max_seqlen_q,
max_seqlen_k,
softmax_scale,
causal,
block_table,
alibi_slopes,
softcap=softcap,
window_size_left=real_window_size[0],
window_size_right=real_window_size[1],
k_scale=1.0,
v_scale=1.0,
)
@staticmethod
def get_scheduler_metadata(
batch_size,
max_seqlen_q,
max_seqlen_k,
num_heads_q,
num_heads_kv,
headdim,
cache_seqlens: torch.Tensor,
qkv_dtype=torch.bfloat16,
headdim_v=None,
cu_seqlens_q: Optional[torch.Tensor] = None,
cu_seqlens_k_new: Optional[torch.Tensor] = None,
cache_leftpad: Optional[torch.Tensor] = None,
page_size: Optional[int] = None,
max_seqlen_k_new=0,
causal=False,
window_size=(-1, -1), # -1 means infinite context window
has_softcap=False,
num_splits=0, # Can be tuned for speed
pack_gqa=None, # Can be tuned for speed
sm_margin=0, # Can be tuned if some SMs are used for communication
) -> None:
logger.warning_once(
"get_scheduler_metadata is not implemented for ipex_ops, "
"returning None.")
return None
@staticmethod
def copy_blocks(key_caches: list[torch.Tensor],
value_caches: list[torch.Tensor],
block_mapping: torch.Tensor) -> None:
torch.xpu.copy_blocks( # type: ignore
key_caches,
value_caches,
block_mapping,
)
@staticmethod
def swap_blocks(src: torch.Tensor, dst: torch.Tensor,
block_mapping: torch.Tensor) -> None:
torch.xpu.swap_blocks(src, dst, block_mapping) # type: ignore