200 lines
6.1 KiB
Python
200 lines
6.1 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
from vllm.model_executor.models.glm4_1v import Glm4vImageEmbeddingInputs
|
|
from vllm.model_executor.models.granite_speech import GraniteSpeechAudioInputs
|
|
from vllm.model_executor.models.phi3v import Phi3VImagePixelInputs
|
|
|
|
|
|
def test_tensor_schema_valid_tensor():
|
|
Phi3VImagePixelInputs(
|
|
data=torch.randn(16, 64, 3, 32, 32),
|
|
image_sizes=torch.randint(0, 256, (16, 2)),
|
|
)
|
|
|
|
|
|
def test_tensor_schema_optional_fields():
|
|
Phi3VImagePixelInputs(
|
|
data=torch.randn(16, 64, 3, 32, 32),
|
|
image_sizes=None,
|
|
)
|
|
|
|
Phi3VImagePixelInputs(data=torch.randn(16, 64, 3, 32, 32), )
|
|
|
|
|
|
def test_tensor_schema_constant_dim_failure():
|
|
with pytest.raises(ValueError, match="dim\\[2\\] expected 3, got 4"):
|
|
Phi3VImagePixelInputs(
|
|
data=torch.randn(16, 64, 4, 32, 32), # dim[2] = 4
|
|
image_sizes=torch.randint(0, 256, (16, 2)),
|
|
)
|
|
|
|
|
|
def test_tensor_schema_invalid_types_in_list():
|
|
with pytest.raises(ValueError, match="is not a torch.Tensor"):
|
|
Phi3VImagePixelInputs(
|
|
data=[
|
|
torch.randn(64, 3, 32, 32),
|
|
"not_a_tensor",
|
|
torch.randn(64, 3, 32, 32),
|
|
],
|
|
image_sizes=torch.randint(0, 256, (3, 2)),
|
|
)
|
|
|
|
|
|
def test_tensor_schema_rank_mismatch():
|
|
with pytest.raises(ValueError, match="has rank 3 but expected 5"):
|
|
Phi3VImagePixelInputs(
|
|
data=torch.randn(16, 64, 3),
|
|
image_sizes=torch.randint(0, 256, (16, 2)),
|
|
)
|
|
|
|
|
|
def test_tensor_schema_missing_required_field():
|
|
with pytest.raises(ValueError, match="Required field 'data' is missing"):
|
|
Phi3VImagePixelInputs(image_sizes=torch.randint(0, 256, (16, 2)), )
|
|
|
|
|
|
def test_tensor_schema_symbolic_dim_mismatch():
|
|
with pytest.raises(ValueError, match="expected 'bn'=12, got 16"):
|
|
Phi3VImagePixelInputs(
|
|
data=torch.randn(12, 64, 3, 32, 32),
|
|
image_sizes=torch.randint(0, 256, (16, 2)),
|
|
)
|
|
|
|
|
|
def test_tensor_schema_list_tensor_valid():
|
|
Phi3VImagePixelInputs(
|
|
data=[torch.randn(64, 3, 32, 32) for _ in range(16)],
|
|
image_sizes=torch.randint(0, 256, (16, 2)),
|
|
)
|
|
|
|
|
|
def test_tensor_schema_variable_patch_counts_valid():
|
|
# Each image has a different number of patches (p)
|
|
# Each tensor has shape (p, 3, 32, 32)
|
|
data = [
|
|
torch.randn(16, 3, 32, 32), # p = 16
|
|
torch.randn(32, 3, 32, 32), # p = 32
|
|
torch.randn(64, 3, 32, 32), # p = 64
|
|
]
|
|
image_sizes = torch.randint(0, 256, (3, 2)) # bn = 3
|
|
Phi3VImagePixelInputs(
|
|
data=data,
|
|
image_sizes=image_sizes,
|
|
)
|
|
|
|
|
|
def test_tensor_schema_tuple_tensor_valid():
|
|
Phi3VImagePixelInputs(
|
|
data=tuple(torch.randn(64, 3, 32, 32) for _ in range(16)),
|
|
image_sizes=torch.randint(0, 256, (16, 2)),
|
|
)
|
|
|
|
|
|
def test_tensor_schema_inconsistent_shapes_in_list():
|
|
with pytest.raises(ValueError, match="contains inconsistent shapes"):
|
|
Phi3VImagePixelInputs(
|
|
data=[torch.randn(64, 3, 32, 32),
|
|
torch.randn(64, 3, 16, 16)] +
|
|
[torch.randn(64, 3, 32, 32) for _ in range(14)],
|
|
image_sizes=torch.randint(0, 256, (16, 2)),
|
|
)
|
|
|
|
|
|
def test_tensor_schema_empty_list():
|
|
with pytest.raises(ValueError, match="is an empty list"):
|
|
Phi3VImagePixelInputs(
|
|
data=[],
|
|
image_sizes=torch.randint(0, 256, (0, 2)),
|
|
)
|
|
|
|
|
|
def test_tensor_schema_validation_disabled_skips_shape_check():
|
|
# This should NOT raise, because validation is turned off
|
|
# This would normally fail (dim[2] should be 3, not 4)
|
|
Phi3VImagePixelInputs(
|
|
data=torch.randn(16, 64, 4, 32, 32),
|
|
image_sizes=torch.randint(0, 256, (16, 2)),
|
|
validate=False,
|
|
)
|
|
|
|
|
|
def test_tensor_schema_with_valid_resolve_binding_dims():
|
|
data = torch.randn(16, 64, 3, 336, 336) # h=336, w=336
|
|
image_sizes = torch.randint(0, 256, (16, 2))
|
|
|
|
Phi3VImagePixelInputs(
|
|
data=data,
|
|
image_sizes=image_sizes,
|
|
resolve_bindings={
|
|
"h": 336,
|
|
"w": 336
|
|
},
|
|
)
|
|
|
|
|
|
def test_tensor_schema_with_invalid_resolve_binding_dims():
|
|
data = torch.randn(16, 64, 3, 36, 36) # h=36, w=36
|
|
image_sizes = torch.randint(0, 256, (16, 2))
|
|
|
|
# Should raise because 'h' and 'w' don't match resolve bindings
|
|
with pytest.raises(ValueError, match="dim\\[3\\] expected 336, got 36"):
|
|
Phi3VImagePixelInputs(
|
|
data=data,
|
|
image_sizes=image_sizes,
|
|
resolve_bindings={
|
|
"h": 336,
|
|
"w": 336
|
|
},
|
|
)
|
|
|
|
|
|
def test_tensor_schema_with_list_of_symbolic_dim():
|
|
input_features = torch.randn(3, 10, 160) # (b=3, fi=10, 160)
|
|
input_features_mask = torch.randn(3, 8) # (b=3, fo=8)
|
|
audio_embed_sizes = [8, 8, 8] # len = b = 3
|
|
|
|
GraniteSpeechAudioInputs(
|
|
input_features=input_features,
|
|
input_features_mask=input_features_mask,
|
|
audio_embed_sizes=audio_embed_sizes,
|
|
)
|
|
|
|
|
|
def test_tensor_schema_with_list_of_symbolic_dim_mismatch_in_length():
|
|
input_features = torch.randn(4, 10, 160) # (b=4, fi=10, 160)
|
|
input_features_mask = torch.randn(4, 8) # (b=4, fo=8)
|
|
audio_embed_sizes = [8, 8, 8] # len = 3 ≠ b
|
|
|
|
with pytest.raises(ValueError, match="expected 'b'=4, got 3"):
|
|
GraniteSpeechAudioInputs(
|
|
input_features=input_features,
|
|
input_features_mask=input_features_mask,
|
|
audio_embed_sizes=audio_embed_sizes,
|
|
)
|
|
|
|
|
|
def test_valid_tensor_schema_with_static_last_dim():
|
|
image_embeds = torch.randn(256, 1024)
|
|
image_grid_thw = torch.randint(0, 4, (2, 3))
|
|
|
|
Glm4vImageEmbeddingInputs(
|
|
image_embeds=image_embeds,
|
|
image_grid_thw=image_grid_thw,
|
|
)
|
|
|
|
|
|
def test_invalid_tensor_schema_with_static_last_dim():
|
|
image_embeds = torch.randn(256, 1024)
|
|
image_grid_thw = torch.randint(0, 4, (2, 4)) # Wrong last dim
|
|
|
|
with pytest.raises(ValueError, match="dim\\[1\\] expected 3, got 4"):
|
|
Glm4vImageEmbeddingInputs(
|
|
image_embeds=image_embeds,
|
|
image_grid_thw=image_grid_thw,
|
|
)
|