Files
vllm-dev/tests/test_pooling_params.py

107 lines
3.2 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pytest
from tests.models.utils import EmbedModelInfo
from vllm import PoolingParams
from vllm.config import ModelConfig
EMBEDDING_MODELS = [
EmbedModelInfo("intfloat/multilingual-e5-small", is_matryoshka=False),
EmbedModelInfo("Snowflake/snowflake-arctic-embed-m-v1.5",
is_matryoshka=True,
matryoshka_dimensions=[256]),
]
def test_task():
pooling_params = PoolingParams()
pooling_params.verify(task="score")
pooling_params = PoolingParams(task="score")
pooling_params.verify(task="score")
with pytest.raises(ValueError):
pooling_params.verify(task="encode")
def test_embed():
task = "embed"
pooling_params = PoolingParams(normalize=None)
pooling_params.verify(task=task)
pooling_params = PoolingParams(normalize=True)
pooling_params.verify(task=task)
pooling_params = PoolingParams(normalize=False)
pooling_params.verify(task=task)
invalid_parameters = ["activation", "softmax"]
for p in invalid_parameters:
with pytest.raises(ValueError):
pooling_params = PoolingParams(**{p: True})
pooling_params.verify(task=task)
@pytest.mark.parametrize("model_info", EMBEDDING_MODELS)
def test_embed_dimensions(model_info: EmbedModelInfo):
task = "embed"
model_config = ModelConfig(
model_info.name,
task="auto",
tokenizer=model_info.name,
tokenizer_mode="auto",
trust_remote_code=False,
seed=0,
dtype="float16",
)
pooling_params = PoolingParams(dimensions=None)
pooling_params.verify(task=task, model_config=model_config)
with pytest.raises(ValueError):
pooling_params = PoolingParams(dimensions=1)
pooling_params.verify(task=task, model_config=model_config)
if model_info.is_matryoshka:
assert model_info.matryoshka_dimensions is not None
pooling_params = PoolingParams(
dimensions=model_info.matryoshka_dimensions[0])
pooling_params.verify(task=task, model_config=model_config)
@pytest.mark.parametrize("task", ["score", "classify"])
def test_classify(task):
pooling_params = PoolingParams(activation=None)
pooling_params.verify(task=task)
pooling_params = PoolingParams(activation=True)
pooling_params.verify(task=task)
pooling_params = PoolingParams(activation=False)
pooling_params.verify(task=task)
invalid_parameters = ["dimensions", "normalize", "softmax"]
for p in invalid_parameters:
with pytest.raises(ValueError):
pooling_params = PoolingParams(**{p: True})
pooling_params.verify(task=task)
def test_encode():
task = "encode"
pooling_params = PoolingParams(softmax=None)
pooling_params.verify(task=task)
pooling_params = PoolingParams(softmax=True)
pooling_params.verify(task=task)
pooling_params = PoolingParams(softmax=False)
pooling_params.verify(task=task)
invalid_parameters = ["dimensions", "normalize", "activation"]
for p in invalid_parameters:
with pytest.raises(ValueError):
pooling_params = PoolingParams(**{p: True})
pooling_params.verify(task=task)