# SPDX-License-Identifier: Apache-2.0 # SPDX-FileCopyrightText: Copyright contributors to the vLLM project import asyncio import time from collections.abc import AsyncGenerator, AsyncIterator from collections.abc import Sequence as GenericSequence from typing import Optional, Union, cast import jinja2 from fastapi import Request from typing_extensions import assert_never from vllm.config import ModelConfig from vllm.engine.protocol import EngineClient from vllm.entrypoints.logger import RequestLogger # yapf conflicts with isort for this block # yapf: disable from vllm.entrypoints.openai.protocol import (CompletionLogProbs, CompletionRequest, CompletionResponse, CompletionResponseChoice, CompletionResponseStreamChoice, CompletionStreamResponse, ErrorResponse, PromptTokenUsageInfo, RequestResponseMetadata, UsageInfo) from vllm.entrypoints.openai.serving_engine import ( EmbedsPrompt as ServingEngineEmbedsPrompt) from vllm.entrypoints.openai.serving_engine import (OpenAIServing, TextTokensPrompt, clamp_prompt_logprobs, is_text_tokens_prompt) # yapf: enable from vllm.entrypoints.openai.serving_models import OpenAIServingModels from vllm.entrypoints.utils import get_max_tokens from vllm.inputs.data import (EmbedsPrompt, TokensPrompt, is_embeds_prompt, is_tokens_prompt) from vllm.logger import init_logger from vllm.outputs import RequestOutput from vllm.sampling_params import BeamSearchParams, SamplingParams from vllm.sequence import Logprob from vllm.transformers_utils.tokenizer import AnyTokenizer from vllm.utils import as_list, merge_async_iterators logger = init_logger(__name__) class OpenAIServingCompletion(OpenAIServing): def __init__( self, engine_client: EngineClient, model_config: ModelConfig, models: OpenAIServingModels, *, request_logger: Optional[RequestLogger], return_tokens_as_token_ids: bool = False, enable_prompt_tokens_details: bool = False, enable_force_include_usage: bool = False, log_error_stack: bool = False, ): super().__init__( engine_client=engine_client, model_config=model_config, models=models, request_logger=request_logger, return_tokens_as_token_ids=return_tokens_as_token_ids, enable_force_include_usage=enable_force_include_usage, log_error_stack=log_error_stack, ) self.enable_prompt_tokens_details = enable_prompt_tokens_details self.default_sampling_params = ( self.model_config.get_diff_sampling_param()) if self.default_sampling_params: source = self.model_config.generation_config source = "model" if source == "auto" else source logger.info( "Using default completion sampling params from %s: %s", source, self.default_sampling_params, ) async def create_completion( self, request: CompletionRequest, raw_request: Optional[Request] = None, ) -> Union[AsyncGenerator[str, None], CompletionResponse, ErrorResponse]: """Completion API similar to OpenAI's API. See https://platform.openai.com/docs/api-reference/completions/create for the API specification. This API mimics the OpenAI Completion API. NOTE: Currently we do not support the following feature: - suffix (the language models we currently support do not support suffix) """ error_check_ret = await self._check_model(request) if error_check_ret is not None: return error_check_ret # If the engine is dead, raise the engine's DEAD_ERROR. # This is required for the streaming case, where we return a # success status before we actually start generating text :). if self.engine_client.errored: raise self.engine_client.dead_error # Return error for unsupported features. if request.suffix is not None: return self.create_error_response( "suffix is not currently supported") if request.echo and request.prompt_embeds is not None: return self.create_error_response( "Echo is unsupported with prompt embeds.") request_id = ( f"cmpl-" f"{self._base_request_id(raw_request, request.request_id)}") created_time = int(time.time()) request_metadata = RequestResponseMetadata(request_id=request_id) if raw_request: raw_request.state.request_metadata = request_metadata try: lora_request = self._maybe_get_adapters(request) if self.model_config.skip_tokenizer_init: tokenizer = None else: tokenizer = await self.engine_client.get_tokenizer(lora_request ) request_prompts, engine_prompts = await self._preprocess_completion( request, tokenizer, request.prompt, truncate_prompt_tokens=request.truncate_prompt_tokens, add_special_tokens=request.add_special_tokens, ) except ValueError as e: logger.exception("Error in preprocessing prompt inputs") return self.create_error_response(str(e)) except TypeError as e: logger.exception("Error in preprocessing prompt inputs") return self.create_error_response(str(e)) except RuntimeError as e: logger.exception("Error in preprocessing prompt inputs") return self.create_error_response(str(e)) except jinja2.TemplateError as e: logger.exception("Error in preprocessing prompt inputs") return self.create_error_response(str(e)) # Schedule the request and get the result generator. generators: list[AsyncGenerator[RequestOutput, None]] = [] try: for i, engine_prompt in enumerate(engine_prompts): sampling_params: Union[SamplingParams, BeamSearchParams] # Mypy does not infer that engine_prompt will have only one of # "prompt_token_ids" or "prompt_embeds" defined, and both of # these as Union[object, the expected type], where it infers # object if engine_prompt is a subclass of one of the # typeddicts that defines both keys. Worse, because of # https://github.com/python/mypy/issues/8586, mypy does not # infer the type of engine_prompt correctly because of the # enumerate. So we need an unnecessary cast here. engine_prompt = cast(Union[EmbedsPrompt, TokensPrompt], engine_prompt) if is_embeds_prompt(engine_prompt): input_length = len(engine_prompt["prompt_embeds"]) elif is_tokens_prompt(engine_prompt): input_length = len(engine_prompt["prompt_token_ids"]) else: assert_never(engine_prompt) if self.default_sampling_params is None: self.default_sampling_params = {} max_tokens = get_max_tokens( max_model_len=self.max_model_len, request=request, input_length=input_length, default_sampling_params=self.default_sampling_params, ) if request.use_beam_search: sampling_params = request.to_beam_search_params( max_tokens, self.default_sampling_params) else: sampling_params = request.to_sampling_params( max_tokens, self.model_config.logits_processor_pattern, self.default_sampling_params, ) request_id_item = f"{request_id}-{i}" self._log_inputs( request_id_item, request_prompts[i], params=sampling_params, lora_request=lora_request, ) trace_headers = (None if raw_request is None else await self._get_trace_headers(raw_request.headers)) # Mypy inconsistently requires this second cast in different # environments. It shouldn't be necessary (redundant from above) # but pre-commit in CI fails without it. engine_prompt = cast(Union[EmbedsPrompt, TokensPrompt], engine_prompt) if isinstance(sampling_params, BeamSearchParams): generator = self.engine_client.beam_search( prompt=engine_prompt, request_id=request_id, params=sampling_params, lora_request=lora_request, ) else: generator = self.engine_client.generate( engine_prompt, sampling_params, request_id_item, lora_request=lora_request, trace_headers=trace_headers, priority=request.priority, ) generators.append(generator) except ValueError as e: # TODO: Use a vllm-specific Validation Error return self.create_error_response(str(e)) result_generator = merge_async_iterators(*generators) model_name = self._get_model_name(request.model, lora_request) num_prompts = len(engine_prompts) # Similar to the OpenAI API, when n != best_of, we do not stream the # results. Noting that best_of is only supported in V0. In addition, # we do not stream the results when use beam search. stream = (request.stream and (request.best_of is None or request.n == request.best_of) and not request.use_beam_search) # Streaming response if stream: return self.completion_stream_generator( request, request_prompts, result_generator, request_id, created_time, model_name, num_prompts=num_prompts, tokenizer=tokenizer, request_metadata=request_metadata, enable_force_include_usage=self.enable_force_include_usage, ) # Non-streaming response final_res_batch: list[Optional[RequestOutput]] = [None] * num_prompts try: async for i, res in result_generator: final_res_batch[i] = res for i, final_res in enumerate(final_res_batch): assert final_res is not None # The output should contain the input text # We did not pass it into vLLM engine to avoid being redundant # with the inputs token IDs if final_res.prompt is None: request_prompt = request_prompts[i] if is_text_tokens_prompt(request_prompt): final_res.prompt = request_prompt["prompt"] else: final_res.prompt = None final_res_batch_checked = cast(list[RequestOutput], final_res_batch) response = self.request_output_to_completion_response( final_res_batch_checked, request, request_id, created_time, model_name, tokenizer, request_metadata, ) except asyncio.CancelledError: return self.create_error_response("Client disconnected") except ValueError as e: # TODO: Use a vllm-specific Validation Error return self.create_error_response(str(e)) # When user requests streaming but we don't stream, we still need to # return a streaming response with a single event. if request.stream: response_json = response.model_dump_json() async def fake_stream_generator() -> AsyncGenerator[str, None]: yield f"data: {response_json}\n\n" yield "data: [DONE]\n\n" return fake_stream_generator() return response async def completion_stream_generator( self, request: CompletionRequest, request_prompts: list[Union[TextTokensPrompt, ServingEngineEmbedsPrompt]], result_generator: AsyncIterator[tuple[int, RequestOutput]], request_id: str, created_time: int, model_name: str, num_prompts: int, tokenizer: AnyTokenizer, request_metadata: RequestResponseMetadata, enable_force_include_usage: bool, ) -> AsyncGenerator[str, None]: num_choices = 1 if request.n is None else request.n previous_text_lens = [0] * num_choices * num_prompts previous_num_tokens = [0] * num_choices * num_prompts has_echoed = [False] * num_choices * num_prompts num_prompt_tokens = [0] * num_prompts num_cached_tokens = None first_iteration = True stream_options = request.stream_options if stream_options: include_usage = (stream_options.include_usage or enable_force_include_usage) include_continuous_usage = (include_usage and stream_options.continuous_usage_stats) else: include_usage, include_continuous_usage = False, False try: async for prompt_idx, res in result_generator: prompt_token_ids = res.prompt_token_ids prompt_logprobs = res.prompt_logprobs if first_iteration: num_cached_tokens = res.num_cached_tokens first_iteration = False if res.prompt is not None: prompt_text = res.prompt else: request_prompt = request_prompts[prompt_idx] if is_text_tokens_prompt(request_prompt): prompt_text = request_prompt["prompt"] else: prompt_text = None # Prompt details are excluded from later streamed outputs if prompt_token_ids is not None: num_prompt_tokens[prompt_idx] = len(prompt_token_ids) delta_token_ids: GenericSequence[int] out_logprobs: Optional[GenericSequence[Optional[dict[ int, Logprob]]]] for output in res.outputs: i = output.index + prompt_idx * num_choices # Useful when request.return_token_ids is True # Returning prompt token IDs shares the same logic # with the echo implementation. prompt_token_ids_to_return: Optional[list[int]] = None assert request.max_tokens is not None if request.echo and not has_echoed[i]: assert prompt_token_ids is not None assert prompt_text is not None if request.max_tokens == 0: # only return the prompt delta_text = prompt_text delta_token_ids = prompt_token_ids out_logprobs = prompt_logprobs else: # echo the prompt and first token delta_text = prompt_text + output.text delta_token_ids = [ *prompt_token_ids, *output.token_ids, ] out_logprobs = [ *(prompt_logprobs or []), *(output.logprobs or []), ] prompt_token_ids_to_return = prompt_token_ids has_echoed[i] = True else: # return just the delta delta_text = output.text delta_token_ids = output.token_ids out_logprobs = output.logprobs # has_echoed[i] is reused here to indicate whether # we have already returned the prompt token IDs. if not has_echoed[i]: prompt_token_ids_to_return = prompt_token_ids has_echoed[i] = True if (not delta_text and not delta_token_ids and not previous_num_tokens[i]): # Chunked prefill case, don't return empty chunks continue if request.logprobs is not None: assert out_logprobs is not None, ( "Did not output logprobs") logprobs = self._create_completion_logprobs( token_ids=delta_token_ids, top_logprobs=out_logprobs, num_output_top_logprobs=request.logprobs, tokenizer=tokenizer, initial_text_offset=previous_text_lens[i], return_as_token_id=request. return_tokens_as_token_ids, ) else: logprobs = None previous_text_lens[i] += len(output.text) previous_num_tokens[i] += len(output.token_ids) finish_reason = output.finish_reason stop_reason = output.stop_reason chunk = CompletionStreamResponse( id=request_id, created=created_time, model=model_name, choices=[ CompletionResponseStreamChoice( index=i, text=delta_text, logprobs=logprobs, finish_reason=finish_reason, stop_reason=stop_reason, prompt_token_ids=prompt_token_ids_to_return, token_ids=(as_list(output.token_ids) if request.return_token_ids else None), ) ], ) if include_continuous_usage: prompt_tokens = num_prompt_tokens[prompt_idx] completion_tokens = previous_num_tokens[i] chunk.usage = UsageInfo( prompt_tokens=prompt_tokens, completion_tokens=completion_tokens, total_tokens=prompt_tokens + completion_tokens, ) response_json = chunk.model_dump_json(exclude_unset=False) yield f"data: {response_json}\n\n" total_prompt_tokens = sum(num_prompt_tokens) total_completion_tokens = sum(previous_num_tokens) final_usage_info = UsageInfo( prompt_tokens=total_prompt_tokens, completion_tokens=total_completion_tokens, total_tokens=total_prompt_tokens + total_completion_tokens, ) if self.enable_prompt_tokens_details and num_cached_tokens: final_usage_info.prompt_tokens_details = PromptTokenUsageInfo( cached_tokens=num_cached_tokens) if include_usage: final_usage_chunk = CompletionStreamResponse( id=request_id, created=created_time, model=model_name, choices=[], usage=final_usage_info, ) final_usage_data = final_usage_chunk.model_dump_json( exclude_unset=False, exclude_none=True) yield f"data: {final_usage_data}\n\n" # report to FastAPI middleware aggregate usage across all choices request_metadata.final_usage_info = final_usage_info except Exception as e: # TODO: Use a vllm-specific Validation Error data = self.create_streaming_error_response(str(e)) yield f"data: {data}\n\n" yield "data: [DONE]\n\n" def request_output_to_completion_response( self, final_res_batch: list[RequestOutput], request: CompletionRequest, request_id: str, created_time: int, model_name: str, tokenizer: AnyTokenizer, request_metadata: RequestResponseMetadata, ) -> CompletionResponse: choices: list[CompletionResponseChoice] = [] num_prompt_tokens = 0 num_generated_tokens = 0 kv_transfer_params = None last_final_res = None for final_res in final_res_batch: last_final_res = final_res prompt_token_ids = final_res.prompt_token_ids assert prompt_token_ids is not None prompt_logprobs = clamp_prompt_logprobs(final_res.prompt_logprobs) prompt_text = final_res.prompt token_ids: GenericSequence[int] out_logprobs: Optional[GenericSequence[Optional[dict[int, Logprob]]]] for output in final_res.outputs: assert request.max_tokens is not None if request.echo: assert prompt_text is not None if request.max_tokens == 0: token_ids = prompt_token_ids out_logprobs = prompt_logprobs output_text = prompt_text else: token_ids = [*prompt_token_ids, *output.token_ids] if request.logprobs is None: out_logprobs = None else: assert prompt_logprobs is not None assert output.logprobs is not None out_logprobs = [ *prompt_logprobs, *output.logprobs, ] output_text = prompt_text + output.text else: token_ids = output.token_ids out_logprobs = output.logprobs output_text = output.text if request.logprobs is not None: assert out_logprobs is not None, "Did not output logprobs" logprobs = self._create_completion_logprobs( token_ids=token_ids, top_logprobs=out_logprobs, tokenizer=tokenizer, num_output_top_logprobs=request.logprobs, return_as_token_id=request.return_tokens_as_token_ids, ) else: logprobs = None choice_data = CompletionResponseChoice( index=len(choices), text=output_text, logprobs=logprobs, finish_reason=output.finish_reason, stop_reason=output.stop_reason, prompt_logprobs=final_res.prompt_logprobs, prompt_token_ids=(prompt_token_ids if request.return_token_ids else None), token_ids=(as_list(output.token_ids) if request.return_token_ids else None), ) choices.append(choice_data) num_generated_tokens += len(output.token_ids) num_prompt_tokens += len(prompt_token_ids) usage = UsageInfo( prompt_tokens=num_prompt_tokens, completion_tokens=num_generated_tokens, total_tokens=num_prompt_tokens + num_generated_tokens, ) if (self.enable_prompt_tokens_details and last_final_res and last_final_res.num_cached_tokens): usage.prompt_tokens_details = PromptTokenUsageInfo( cached_tokens=last_final_res.num_cached_tokens) request_metadata.final_usage_info = usage if final_res_batch: kv_transfer_params = final_res_batch[0].kv_transfer_params return CompletionResponse( id=request_id, created=created_time, model=model_name, choices=choices, usage=usage, kv_transfer_params=kv_transfer_params, ) def _create_completion_logprobs( self, token_ids: GenericSequence[int], top_logprobs: GenericSequence[Optional[dict[int, Logprob]]], num_output_top_logprobs: int, tokenizer: AnyTokenizer, initial_text_offset: int = 0, return_as_token_id: Optional[bool] = None, ) -> CompletionLogProbs: """Create logprobs for OpenAI Completion API.""" out_text_offset: list[int] = [] out_token_logprobs: list[Optional[float]] = [] out_tokens: list[str] = [] out_top_logprobs: list[Optional[dict[str, float]]] = [] last_token_len = 0 should_return_as_token_id = (return_as_token_id if return_as_token_id is not None else self.return_tokens_as_token_ids) for i, token_id in enumerate(token_ids): step_top_logprobs = top_logprobs[i] if step_top_logprobs is None: token = tokenizer.decode(token_id) if should_return_as_token_id: token = f"token_id:{token_id}" out_tokens.append(token) out_token_logprobs.append(None) out_top_logprobs.append(None) else: step_token = step_top_logprobs[token_id] token = self._get_decoded_token( step_token, token_id, tokenizer, return_as_token_id=should_return_as_token_id, ) token_logprob = max(step_token.logprob, -9999.0) out_tokens.append(token) out_token_logprobs.append(token_logprob) # makes sure to add the top num_output_top_logprobs + 1 # logprobs, as defined in the openai API # (cf. https://github.com/openai/openai-openapi/blob/ # 893ba52242dbd5387a97b96444ee1c742cfce9bd/openapi.yaml#L7153) out_top_logprobs.append({ # Convert float("-inf") to the # JSON-serializable float that OpenAI uses self._get_decoded_token( top_lp[1], top_lp[0], tokenizer, return_as_token_id=should_return_as_token_id, ): max(top_lp[1].logprob, -9999.0) for i, top_lp in enumerate(step_top_logprobs.items()) if num_output_top_logprobs >= i }) if len(out_text_offset) == 0: out_text_offset.append(initial_text_offset) else: out_text_offset.append(out_text_offset[-1] + last_token_len) last_token_len = len(token) return CompletionLogProbs( text_offset=out_text_offset, token_logprobs=out_token_logprobs, tokens=out_tokens, top_logprobs=out_top_logprobs, )