[Misc] Remove in ModelRunnerOutput
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
This commit is contained in:
@ -17,10 +17,6 @@ def _make_model_runner_output(
|
||||
req_ids = list(scheduler_output.num_scheduled_tokens.keys())
|
||||
return ModelRunnerOutput(
|
||||
req_ids=req_ids,
|
||||
req_id_to_index={
|
||||
req_id: i
|
||||
for i, req_id in enumerate(req_ids)
|
||||
},
|
||||
sampled_token_ids=[[i] for i in range(len(req_ids))],
|
||||
logprobs=None,
|
||||
prompt_logprobs_dict={},
|
||||
|
@ -148,13 +148,8 @@ def test_schedule_partial_requests():
|
||||
# The third request is also scheduled partially.
|
||||
# The <img> tokens are not scheduled because of the encoder budget.
|
||||
assert output.num_scheduled_tokens[requests[2].request_id] == 100
|
||||
req_to_index = {
|
||||
request.request_id: i
|
||||
for i, request in enumerate(requests)
|
||||
}
|
||||
model_runner_output = ModelRunnerOutput(
|
||||
req_ids=[request.request_id for request in requests],
|
||||
req_id_to_index=req_to_index,
|
||||
# Only the first request has a sampled token id because
|
||||
# the rest requests are still being prefilled.
|
||||
sampled_token_ids=[[0], [], []],
|
||||
@ -200,13 +195,8 @@ def test_no_mm_input_chunking():
|
||||
# We want to only see the 400 text tokens at the start scheduled
|
||||
assert output.num_scheduled_tokens[requests[0].request_id] == 400
|
||||
|
||||
req_to_index = {
|
||||
request.request_id: i
|
||||
for i, request in enumerate(requests)
|
||||
}
|
||||
model_runner_output = ModelRunnerOutput(
|
||||
req_ids=[request.request_id for request in requests],
|
||||
req_id_to_index=req_to_index,
|
||||
sampled_token_ids=[[] for _ in range(len(requests))],
|
||||
logprobs=None,
|
||||
prompt_logprobs_dict={},
|
||||
@ -263,13 +253,8 @@ def test_schedule_concurrent_partial_requests(enable_prefix_caching: bool):
|
||||
assert output.num_scheduled_tokens[requests[1].request_id] == 400
|
||||
# The third request is also scheduled partially - 1024 - 400 - 400 = 224.
|
||||
assert output.num_scheduled_tokens[requests[2].request_id] == 224
|
||||
req_to_index = {
|
||||
request.request_id: i
|
||||
for i, request in enumerate(requests)
|
||||
}
|
||||
model_runner_output = ModelRunnerOutput(
|
||||
req_ids=[request.request_id for request in requests],
|
||||
req_id_to_index=req_to_index,
|
||||
sampled_token_ids=[[] for _ in range(len(requests))],
|
||||
logprobs=None,
|
||||
prompt_logprobs_dict={},
|
||||
@ -293,7 +278,6 @@ def test_schedule_concurrent_partial_requests(enable_prefix_caching: bool):
|
||||
# All the remaining tokens in the third request are processed.
|
||||
model_runner_output = ModelRunnerOutput(
|
||||
req_ids=[request.request_id for request in requests],
|
||||
req_id_to_index=req_to_index,
|
||||
sampled_token_ids=[[0], [0]] + [[] for _ in range(len(requests) - 2)],
|
||||
logprobs=None,
|
||||
prompt_logprobs_dict={},
|
||||
@ -344,10 +328,6 @@ def test_stop_via_update_from_output():
|
||||
|
||||
model_output = ModelRunnerOutput(
|
||||
req_ids=[req.request_id for req in requests],
|
||||
req_id_to_index={
|
||||
req.request_id: i
|
||||
for i, req in enumerate(requests)
|
||||
},
|
||||
sampled_token_ids=[[EOS_TOKEN_ID],
|
||||
[10,
|
||||
11]], # First request hits EOS, second continues
|
||||
@ -398,10 +378,6 @@ def test_stop_via_update_from_output():
|
||||
|
||||
model_output = ModelRunnerOutput(
|
||||
req_ids=[req.request_id for req in requests],
|
||||
req_id_to_index={
|
||||
req.request_id: i
|
||||
for i, req in enumerate(requests)
|
||||
},
|
||||
sampled_token_ids=[[10, 42, 12],
|
||||
[13, 14]], # First request hits stop token
|
||||
logprobs=None,
|
||||
@ -450,10 +426,6 @@ def test_stop_via_update_from_output():
|
||||
|
||||
model_output = ModelRunnerOutput(
|
||||
req_ids=[req.request_id for req in requests],
|
||||
req_id_to_index={
|
||||
req.request_id: i
|
||||
for i, req in enumerate(requests)
|
||||
},
|
||||
sampled_token_ids=[[10, 11, 12],
|
||||
[13]], # First request exceeds max_tokens
|
||||
logprobs=None,
|
||||
@ -496,11 +468,11 @@ def test_stop_via_update_from_output():
|
||||
|
||||
model_output = ModelRunnerOutput(
|
||||
req_ids=[requests[0].request_id],
|
||||
req_id_to_index={requests[0].request_id: 0},
|
||||
sampled_token_ids=[[EOS_TOKEN_ID, 10, 11]],
|
||||
logprobs=None,
|
||||
prompt_logprobs_dict={},
|
||||
pooler_output=[])
|
||||
pooler_output=[],
|
||||
)
|
||||
|
||||
scheduler.update_from_output(scheduler_output, model_output)
|
||||
|
||||
@ -544,7 +516,6 @@ def test_schedule_concurrent_batches(enable_prefix_caching: Optional[bool],
|
||||
# Model output of the first request.
|
||||
model_runner_output = ModelRunnerOutput(
|
||||
req_ids=[requests[0].request_id],
|
||||
req_id_to_index={requests[0].request_id: 0},
|
||||
sampled_token_ids=[[0]],
|
||||
logprobs=None,
|
||||
prompt_logprobs_dict={},
|
||||
@ -561,7 +532,6 @@ def test_schedule_concurrent_batches(enable_prefix_caching: Optional[bool],
|
||||
# Model output of the second request.
|
||||
model_runner_output = ModelRunnerOutput(
|
||||
req_ids=[requests[1].request_id],
|
||||
req_id_to_index={requests[1].request_id: 0},
|
||||
sampled_token_ids=[[0]],
|
||||
logprobs=None,
|
||||
prompt_logprobs_dict={},
|
||||
@ -596,7 +566,6 @@ def test_preempt_during_execution():
|
||||
# Get the output of the first request.
|
||||
model_runner_output0 = ModelRunnerOutput(
|
||||
req_ids=[requests[0].request_id],
|
||||
req_id_to_index={requests[0].request_id: 0},
|
||||
sampled_token_ids=[[0]],
|
||||
logprobs=None,
|
||||
prompt_logprobs_dict={},
|
||||
@ -613,7 +582,6 @@ def test_preempt_during_execution():
|
||||
|
||||
model_runner_output1 = ModelRunnerOutput(
|
||||
req_ids=[requests[1].request_id],
|
||||
req_id_to_index={requests[1].request_id: 0},
|
||||
sampled_token_ids=[[42]],
|
||||
logprobs=None,
|
||||
prompt_logprobs_dict={},
|
||||
@ -651,11 +619,9 @@ def test_schedule_spec_decoding_stats(spec_tokens, output_tokens, expected):
|
||||
scheduler = create_scheduler(num_speculative_tokens=num_spec_tokens)
|
||||
requests = create_requests(num_requests=len(spec_tokens), num_tokens=1)
|
||||
req_ids = []
|
||||
req_to_index = {}
|
||||
for i, request in enumerate(requests):
|
||||
scheduler.add_request(request)
|
||||
req_ids.append(request.request_id)
|
||||
req_to_index[request.request_id] = i
|
||||
|
||||
# Schedule a decode, which will also draft speculative tokens
|
||||
output = scheduler.schedule()
|
||||
@ -668,7 +634,6 @@ def test_schedule_spec_decoding_stats(spec_tokens, output_tokens, expected):
|
||||
|
||||
model_runner_output = ModelRunnerOutput(
|
||||
req_ids=req_ids,
|
||||
req_id_to_index=req_to_index,
|
||||
sampled_token_ids=[[0] for _ in range(len(requests))],
|
||||
logprobs=None,
|
||||
prompt_logprobs_dict={},
|
||||
@ -709,7 +674,6 @@ def test_schedule_spec_decoding_stats(spec_tokens, output_tokens, expected):
|
||||
|
||||
model_runner_output = ModelRunnerOutput(
|
||||
req_ids=req_ids,
|
||||
req_id_to_index=req_to_index,
|
||||
sampled_token_ids=output_tokens,
|
||||
logprobs=None,
|
||||
prompt_logprobs_dict={},
|
||||
@ -829,15 +793,12 @@ def test_kv_connector_basic():
|
||||
max_tokens=MAX_TOKENS,
|
||||
block_size=BLOCK_SIZE)
|
||||
req_ids = []
|
||||
req_to_index = {}
|
||||
for i, request in enumerate(requests):
|
||||
scheduler.add_request(request)
|
||||
req_ids.append(request.request_id)
|
||||
req_to_index[request.request_id] = i
|
||||
|
||||
MODEL_RUNNER_OUTPUT = ModelRunnerOutput(
|
||||
req_ids=req_ids,
|
||||
req_id_to_index=req_to_index,
|
||||
sampled_token_ids=[[1000]] * len(req_ids),
|
||||
logprobs=None,
|
||||
prompt_logprobs_dict={},
|
||||
@ -875,15 +836,12 @@ def test_kv_connector_basic():
|
||||
max_tokens=MAX_TOKENS,
|
||||
block_size=BLOCK_SIZE)
|
||||
req_ids = []
|
||||
req_to_index = {}
|
||||
for i, request in enumerate(requests):
|
||||
scheduler.add_request(request)
|
||||
req_ids.append(request.request_id)
|
||||
req_to_index[request.request_id] = i
|
||||
|
||||
MODEL_RUNNER_OUTPUT = ModelRunnerOutput(
|
||||
req_ids=req_ids,
|
||||
req_id_to_index=req_to_index,
|
||||
sampled_token_ids=[[1000]] * len(req_ids),
|
||||
logprobs=None,
|
||||
prompt_logprobs_dict={},
|
||||
@ -942,15 +900,12 @@ def test_kv_connector_unable_to_allocate():
|
||||
max_tokens=MAX_TOKENS,
|
||||
block_size=BLOCK_SIZE)
|
||||
req_ids = []
|
||||
req_to_index = {}
|
||||
for i, request in enumerate(requests):
|
||||
scheduler.add_request(request)
|
||||
req_ids.append(request.request_id)
|
||||
req_to_index[request.request_id] = i
|
||||
|
||||
MODEL_RUNNER_OUTPUT = ModelRunnerOutput(
|
||||
req_ids=req_ids,
|
||||
req_id_to_index=req_to_index,
|
||||
sampled_token_ids=[[1000]] * len(req_ids),
|
||||
logprobs=None,
|
||||
prompt_logprobs_dict={},
|
||||
@ -1023,15 +978,12 @@ def test_kv_connector_handles_preemption():
|
||||
max_tokens=MAX_TOKENS,
|
||||
block_size=BLOCK_SIZE)
|
||||
req_ids = []
|
||||
req_to_index = {}
|
||||
for i, request in enumerate(requests):
|
||||
scheduler.add_request(request)
|
||||
req_ids.append(request.request_id)
|
||||
req_to_index[request.request_id] = i
|
||||
|
||||
MODEL_RUNNER_OUTPUT = ModelRunnerOutput(
|
||||
req_ids=req_ids,
|
||||
req_id_to_index=req_to_index,
|
||||
sampled_token_ids=[[1000]] * len(req_ids),
|
||||
logprobs=None,
|
||||
prompt_logprobs_dict={},
|
||||
@ -1121,10 +1073,6 @@ def test_kv_connector_handles_preemption():
|
||||
def make_output(scheduler: Scheduler):
|
||||
return ModelRunnerOutput(
|
||||
req_ids=[req.request_id for req in scheduler.running],
|
||||
req_id_to_index={
|
||||
req.request_id: i
|
||||
for i, req in enumerate(scheduler.running)
|
||||
},
|
||||
sampled_token_ids=[[1000]] * len(scheduler.running),
|
||||
logprobs=None,
|
||||
prompt_logprobs_dict={},
|
||||
@ -1446,10 +1394,6 @@ def test_priority_scheduling_preemption():
|
||||
# Simulate model execution to move requests to running state
|
||||
model_output = ModelRunnerOutput(
|
||||
req_ids=[req.request_id for req in low_priority_requests],
|
||||
req_id_to_index={
|
||||
req.request_id: i
|
||||
for i, req in enumerate(low_priority_requests)
|
||||
},
|
||||
sampled_token_ids=[[100] for _ in low_priority_requests],
|
||||
logprobs=None,
|
||||
prompt_logprobs_dict={},
|
||||
@ -1518,10 +1462,6 @@ def test_priority_scheduling_no_preemption_when_space_available():
|
||||
output = scheduler.schedule()
|
||||
model_output = ModelRunnerOutput(
|
||||
req_ids=[req.request_id for req in low_priority_requests],
|
||||
req_id_to_index={
|
||||
req.request_id: i
|
||||
for i, req in enumerate(low_priority_requests)
|
||||
},
|
||||
sampled_token_ids=[[100] for _ in low_priority_requests],
|
||||
logprobs=None,
|
||||
prompt_logprobs_dict={},
|
||||
@ -1762,7 +1702,6 @@ def test_priority_scheduling_heap_property():
|
||||
# Simulate completion to make room for next request
|
||||
model_output = ModelRunnerOutput(
|
||||
req_ids=[req.req_id],
|
||||
req_id_to_index={req.req_id: 0},
|
||||
sampled_token_ids=[[100]],
|
||||
logprobs=None,
|
||||
prompt_logprobs_dict={},
|
||||
|
@ -182,7 +182,6 @@ def create_model_runner_output(
|
||||
|
||||
# Make request data.
|
||||
req_ids = [req.request_id for req in reqs]
|
||||
req_id_to_index = {req_id: idx for idx, req_id in enumerate(req_ids)}
|
||||
|
||||
# Make sampled tokens.
|
||||
sampled_token = EOS_TOKEN_ID if use_eos else 0
|
||||
@ -198,7 +197,6 @@ def create_model_runner_output(
|
||||
# Make output data structure.
|
||||
return ModelRunnerOutput(
|
||||
req_ids=req_ids,
|
||||
req_id_to_index=req_id_to_index,
|
||||
sampled_token_ids=sampled_token_ids,
|
||||
logprobs=None,
|
||||
prompt_logprobs_dict={},
|
||||
|
@ -784,7 +784,8 @@ class Scheduler(SchedulerInterface):
|
||||
# to avoid expensive operations inside the loop.
|
||||
stopped_running_reqs: set[Request] = set()
|
||||
stopped_preempted_reqs: set[Request] = set()
|
||||
for req_id, num_tokens_scheduled in num_scheduled_tokens.items():
|
||||
for req_index, req_id in enumerate(model_runner_output.req_ids):
|
||||
num_tokens_scheduled = num_scheduled_tokens[req_id]
|
||||
assert num_tokens_scheduled > 0
|
||||
request = self.requests.get(req_id)
|
||||
if request is None:
|
||||
@ -793,7 +794,6 @@ class Scheduler(SchedulerInterface):
|
||||
# in pipeline parallelism).
|
||||
continue
|
||||
|
||||
req_index = model_runner_output.req_id_to_index[req_id]
|
||||
generated_token_ids = sampled_token_ids[
|
||||
req_index] if sampled_token_ids else []
|
||||
|
||||
|
@ -85,8 +85,6 @@ class ModelRunnerOutput:
|
||||
|
||||
# [num_reqs]
|
||||
req_ids: list[str]
|
||||
# req_id -> index
|
||||
req_id_to_index: dict[str, int]
|
||||
|
||||
# num_reqs x num_generated_tokens
|
||||
# num_generated_tokens is the number of tokens
|
||||
@ -124,7 +122,6 @@ class DraftTokenIds:
|
||||
|
||||
|
||||
EMPTY_MODEL_RUNNER_OUTPUT = ModelRunnerOutput(req_ids=[],
|
||||
req_id_to_index={},
|
||||
sampled_token_ids=[],
|
||||
logprobs=None,
|
||||
prompt_logprobs_dict={},
|
||||
|
@ -1494,7 +1494,6 @@ class GPUModelRunner(LoRAModelRunnerMixin, KVConnectorModelRunnerMixin):
|
||||
|
||||
return ModelRunnerOutput(
|
||||
req_ids=self.input_batch.req_ids,
|
||||
req_id_to_index=self.input_batch.req_id_to_index,
|
||||
sampled_token_ids=[],
|
||||
logprobs=None,
|
||||
prompt_logprobs_dict={},
|
||||
@ -1785,7 +1784,6 @@ class GPUModelRunner(LoRAModelRunnerMixin, KVConnectorModelRunnerMixin):
|
||||
|
||||
return ModelRunnerOutput(
|
||||
req_ids=self.input_batch.req_ids,
|
||||
req_id_to_index=self.input_batch.req_id_to_index,
|
||||
sampled_token_ids=valid_sampled_token_ids,
|
||||
logprobs=logprobs_lists,
|
||||
prompt_logprobs_dict=prompt_logprobs_dict,
|
||||
|
@ -1145,7 +1145,6 @@ class TPUModelRunner(LoRAModelRunnerMixin, KVConnectorModelRunnerMixin):
|
||||
|
||||
model_runner_output = ModelRunnerOutput(
|
||||
req_ids=req_ids,
|
||||
req_id_to_index=self.input_batch.req_id_to_index,
|
||||
sampled_token_ids=valid_sampled_token_ids,
|
||||
logprobs=logprobs_lists,
|
||||
prompt_logprobs_dict=prompt_logprobs_dict,
|
||||
|
Reference in New Issue
Block a user