Migrate Qwen inputs to TensorSchema (#23473)

Signed-off-by: Benji Beck <benjibeck@meta.com>
This commit is contained in:
Benji Beck
2025-08-27 19:43:26 -07:00
committed by GitHub
parent 5da4f5d857
commit a69693e38f

View File

@ -11,7 +11,7 @@ import math
import unicodedata
from collections.abc import Collection, Mapping, Sequence, Set
from functools import lru_cache, partial
from typing import Callable, Literal, Optional, TypedDict, Union
from typing import Annotated, Callable, Literal, Optional, Union
import regex as re
import torch
@ -40,6 +40,7 @@ from vllm.multimodal.processing import (BaseMultiModalProcessor,
PromptUpdate, PromptUpdateDetails)
from vllm.multimodal.profiling import BaseDummyInputsBuilder
from vllm.sequence import IntermediateTensors
from vllm.utils.tensor_schema import TensorSchema, TensorShape
from .interfaces import (MultiModalEmbeddings, SupportsLoRA,
SupportsMultiModal, SupportsPP)
@ -47,26 +48,34 @@ from .qwen import QWenBaseModel, QWenModel
from .utils import flatten_bn, merge_multimodal_embeddings
class QwenImagePixelInputs(TypedDict):
type: Literal["pixel_values"]
data: torch.Tensor
class QwenImagePixelInputs(TensorSchema):
"""
Shape: `(batch_size * num_images, 3, image_size, image_size)`
Dimensions:
- bn: Batch size * number of images
- c: Number of channels (3)
- h: Height
- w: Width
Note that image_size is the value in the vision config to which we resize
the image to in the normalization transform. Currently multi-image support
can only be leveraged by passing image embeddings directly.
"""
type: Literal["pixel_values"] = "pixel_values"
data: Annotated[torch.Tensor, TensorShape("bn", 3, "h", "w")]
class QwenImageEmbeddingInputs(TypedDict):
type: Literal["image_embeds"]
data: torch.Tensor
"""Shape: `(batch_size * num_images, 256, hidden_size)`
class QwenImageEmbeddingInputs(TensorSchema):
"""
Dimensions:
- bn: Batch size * number of images
- ifs: Image feature size (256)
- hs: Hidden size
`hidden_size` must match the hidden size of the language model backbone
and is stored in the visual config of the model if we have one.
"""
type: Literal["image_embeds"] = "image_embeds"
data: Annotated[torch.Tensor, TensorShape("bn", 256, "hs")]
QwenImageInputs = Union[QwenImagePixelInputs, QwenImageEmbeddingInputs]
@ -697,19 +706,6 @@ class QwenVLForConditionalGeneration(QWenBaseModel, SupportsPP, SupportsLoRA,
self.transformer: QwenVLModel
def _validate_pixel_values(self, data: torch.Tensor) -> torch.Tensor:
h = w = self.config.visual["image_size"]
expected_dims = (3, h, w)
actual_dims = tuple(data.shape[1:])
if actual_dims != expected_dims:
expected_expr = ("batch_size", *map(str, expected_dims))
raise ValueError(
f"The expected shape of pixel values is {expected_expr}. "
f"You supplied {tuple(data.shape)}.")
return data
def _parse_and_validate_image_input(
self, **kwargs: object) -> Optional[QwenImageInputs]:
pixel_values = kwargs.pop("pixel_values", None)
@ -720,10 +716,13 @@ class QwenVLForConditionalGeneration(QWenBaseModel, SupportsPP, SupportsLoRA,
raise ValueError("Incorrect type of pixel values. "
f"Got type: {type(pixel_values)}")
expected_h = expected_w = self.config.visual["image_size"]
resolve_bindings = {"h": expected_h, "w": expected_w}
return QwenImagePixelInputs(
type="pixel_values",
data=self._validate_pixel_values(
flatten_bn(pixel_values, concat=True)),
data=flatten_bn(pixel_values, concat=True),
resolve_bindings=resolve_bindings,
)
if image_embeds is not None: