[CI][V0 Deprecation] Removed V0 Only Chunked Prefill and Prefix Caching Tests (#22871)

Signed-off-by: Robert Shaw <robshaw@redhat.com>
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Co-authored-by: Robert Shaw <robshaw@redhat.com>
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
This commit is contained in:
Robert Shaw
2025-08-18 20:39:01 -04:00
committed by GitHub
parent 95e3095136
commit 6603288736
6 changed files with 0 additions and 595 deletions

View File

@ -88,15 +88,6 @@ steps:
- pytest -v -s basic_correctness/test_cpu_offload.py
- VLLM_TEST_ENABLE_ARTIFICIAL_PREEMPT=1 pytest -v -s basic_correctness/test_preemption.py
- label: Chunked Prefill Test
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/
- tests/basic_correctness/test_chunked_prefill
commands:
- VLLM_ATTENTION_BACKEND=XFORMERS pytest -v -s basic_correctness/test_chunked_prefill.py
- VLLM_ATTENTION_BACKEND=FLASH_ATTN pytest -v -s basic_correctness/test_chunked_prefill.py
- label: Core Test # 10min
mirror_hardwares: [amdexperimental]
fast_check: true
@ -295,15 +286,6 @@ steps:
- python3 offline_inference/basic/score.py
- VLLM_USE_V1=0 python3 offline_inference/profiling.py --model facebook/opt-125m run_num_steps --num-steps 2
- label: Prefix Caching Test # 9min
mirror_hardwares: [amdexperimental]
source_file_dependencies:
- vllm/
- tests/prefix_caching
commands:
- pytest -v -s prefix_caching
- label: Platform Tests (CUDA)
mirror_hardwares: [amdexperimental]
source_file_dependencies:

1
.github/CODEOWNERS vendored
View File

@ -31,7 +31,6 @@ CMakeLists.txt @tlrmchlsmth @LucasWilkinson
# Test ownership
/.buildkite/lm-eval-harness @mgoin @simon-mo
/tests/async_engine @njhill @robertgshaw2-redhat @simon-mo
/tests/basic_correctness/test_chunked_prefill @rkooo567 @comaniac
/tests/distributed/test_multi_node_assignment.py @youkaichao
/tests/distributed/test_pipeline_parallel.py @youkaichao
/tests/distributed/test_same_node.py @youkaichao

View File

@ -1,296 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Compare the outputs of HF and vLLM when using greedy sampling.
It tests chunked prefill. Chunked prefill can be enabled by
enable_chunked_prefill=True. If prefill size exceeds max_num_batched_tokens,
prefill requests are chunked.
Run `pytest tests/models/test_chunked_prefill.py`.
"""
from __future__ import annotations
from typing import TYPE_CHECKING
import pytest
from vllm.platforms import current_platform
from vllm.utils import STR_BACKEND_ENV_VAR
from ..models.utils import check_logprobs_close, check_outputs_equal
from ..utils import multi_gpu_test
if TYPE_CHECKING:
from .conftest import HfRunner, VllmRunner
MODELS = [
"facebook/opt-125m",
"meta-llama/Llama-3.2-1B-Instruct",
]
@pytest.fixture(scope="function", autouse=True)
def use_v0_only(monkeypatch: pytest.MonkeyPatch):
"""
Since this module is V0 only, set VLLM_USE_V1=0 for
all tests in the file.
"""
with monkeypatch.context() as m:
m.setenv('VLLM_USE_V1', '0')
yield
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", ["half"])
@pytest.mark.parametrize("max_tokens", [32])
@pytest.mark.parametrize("chunked_prefill_token_size", [1, 4, 16])
@pytest.mark.parametrize("enforce_eager", [False, True])
# NOTE: Increasing this in this suite will fail CI because we currently cannot
# reset distributed env properly. Use a value > 1 just when you test.
@pytest.mark.parametrize("tensor_parallel_size", [1])
@pytest.mark.parametrize("attention_backend", [
pytest.param("FLASHINFER",
marks=pytest.mark.skipif(
current_platform.is_rocm(),
reason="FLASHINFER isn't supported on ROCm")),
"FLASH_ATTN"
])
def test_models(
hf_runner: HfRunner,
vllm_runner: VllmRunner,
example_prompts,
model: str,
dtype: str,
max_tokens: int,
chunked_prefill_token_size: int,
enforce_eager: bool,
tensor_parallel_size: int,
attention_backend: str,
monkeypatch: pytest.MonkeyPatch,
) -> None:
"""
Checks exact match decode between huggingface model and vllm runner with
chunked prefill.
"""
with monkeypatch.context() as m:
m.setenv(STR_BACKEND_ENV_VAR, attention_backend)
max_num_seqs = chunked_prefill_token_size
max_num_batched_tokens = chunked_prefill_token_size
with hf_runner(model, dtype=dtype) as hf_model:
hf_outputs = hf_model.generate_greedy(example_prompts, max_tokens)
with vllm_runner(
model,
dtype=dtype,
max_num_batched_tokens=max_num_batched_tokens,
enable_chunked_prefill=True,
tensor_parallel_size=tensor_parallel_size,
enforce_eager=enforce_eager,
max_num_seqs=max_num_seqs,
) as vllm_model:
vllm_outputs = vllm_model.generate_greedy(example_prompts,
max_tokens)
check_outputs_equal(
outputs_0_lst=hf_outputs,
outputs_1_lst=vllm_outputs,
name_0="hf",
name_1="vllm",
)
@multi_gpu_test(num_gpus=2)
@pytest.mark.parametrize("distributed_executor_backend", ["ray", "mp"])
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("attention_backend", [
pytest.param("FLASHINFER",
marks=pytest.mark.skipif(
current_platform.is_rocm(),
reason="FLASHINFER isn't supported on ROCm")),
"FLASH_ATTN"
])
def test_models_distributed(
hf_runner: HfRunner,
vllm_runner: VllmRunner,
example_prompts,
model: str,
distributed_executor_backend: str,
attention_backend: str,
monkeypatch: pytest.MonkeyPatch,
) -> None:
with monkeypatch.context() as m:
m.setenv(STR_BACKEND_ENV_VAR, attention_backend)
if (model == "meta-llama/Llama-3.2-1B-Instruct"
and distributed_executor_backend == "ray"):
# test Ray Compiled Graph
m.setenv("VLLM_USE_RAY_SPMD_WORKER", "1")
m.setenv("VLLM_USE_RAY_COMPILED_DAG", "1")
dtype = "half"
max_tokens = 5
chunked_prefill_token_size = 16
# Add a chunked prefill config.
max_num_seqs = min(chunked_prefill_token_size, 256)
assert chunked_prefill_token_size != -1
enable_chunked_prefill = True
max_num_batched_tokens = chunked_prefill_token_size
# NOTE: take care of the order. run vLLM first, and then run HF.
# vLLM needs a fresh new process without cuda initialization.
# if we run HF first, the cuda initialization will be done and it
# will hurt multiprocessing backend with
# fork method (the default method).
with vllm_runner(
model,
dtype=dtype,
tensor_parallel_size=2,
max_num_seqs=max_num_seqs,
enable_chunked_prefill=enable_chunked_prefill,
max_num_batched_tokens=max_num_batched_tokens,
distributed_executor_backend=distributed_executor_backend,
) as vllm_model:
vllm_outputs = vllm_model.generate_greedy(
example_prompts,
max_tokens,
)
with hf_runner(model, dtype=dtype) as hf_model:
hf_outputs = hf_model.generate_greedy(example_prompts, max_tokens)
check_outputs_equal(
outputs_0_lst=hf_outputs,
outputs_1_lst=vllm_outputs,
name_0="hf",
name_1="vllm",
)
@pytest.mark.parametrize(
"kv_cache_dtype,model",
[("fp8_e4m3",
"nm-testing/TinyLlama-1.1B-compressed-tensors-kv-cache-scheme")])
# Due to low-precision numerical divergence, we only test logprob of 4 tokens
@pytest.mark.parametrize("max_tokens", [4])
@pytest.mark.parametrize("chunked_prefill_token_size", [4, 16])
@pytest.mark.parametrize("enforce_eager", [False, True])
# NOTE: Increasing this in this suite will fail CI because we currently cannot
# reset distributed env properly. Use a value > 1 just when you test.
@pytest.mark.parametrize("tensor_parallel_size", [1])
# Due to low-precision numerical divergence, this test is too sensitive to
# the async postprocessor
@pytest.mark.parametrize("disable_async_output_proc", [True])
@pytest.mark.skipif(current_platform.is_rocm(),
reason="machete_prepack_B isn't supported on ROCm")
def test_models_with_fp8_kv_cache(
vllm_runner: VllmRunner,
example_prompts,
kv_cache_dtype: str,
model: str,
max_tokens: int,
chunked_prefill_token_size: int,
enforce_eager: bool,
tensor_parallel_size: int,
disable_async_output_proc: bool,
) -> None:
"""
Check output logprobs match between no_chunked_prefill and chunked_prefill
with fp8 kv cache. General fp8 kv-cache tests are covered in test_fp8.py,
so here we only check chunked prefill.
"""
NUM_LOG_PROBS = 8
max_num_seqs = chunked_prefill_token_size
max_num_batched_tokens = chunked_prefill_token_size
with vllm_runner(
model,
tensor_parallel_size=tensor_parallel_size,
enforce_eager=enforce_eager,
max_num_seqs=max_num_seqs,
kv_cache_dtype=kv_cache_dtype,
disable_async_output_proc=disable_async_output_proc,
) as vllm_model:
no_chunked_prefill_outputs = vllm_model.generate_greedy_logprobs(
example_prompts, max_tokens, NUM_LOG_PROBS)
with vllm_runner(
model,
max_num_batched_tokens=max_num_batched_tokens,
enable_chunked_prefill=True,
tensor_parallel_size=tensor_parallel_size,
enforce_eager=enforce_eager,
max_num_seqs=max_num_seqs,
kv_cache_dtype=kv_cache_dtype,
disable_async_output_proc=disable_async_output_proc,
) as vllm_model:
chunked_prefill_outputs = vllm_model.generate_greedy_logprobs(
example_prompts, max_tokens, NUM_LOG_PROBS)
check_logprobs_close(
outputs_0_lst=no_chunked_prefill_outputs,
outputs_1_lst=chunked_prefill_outputs,
name_0="no_chunked_prefill",
name_1="chunked_prefill",
)
@pytest.mark.parametrize("max_tokens", [16])
@pytest.mark.parametrize("enforce_eager", [False])
@pytest.mark.parametrize("chunk_size", [30, 32])
# NOTE: Increasing this in this suite will fail CI because we currently cannot
# reset distributed env properly. Use a value > 1 just when you test.
@pytest.mark.parametrize("tensor_parallel_size", [1])
@pytest.mark.parametrize("dtype", ["half"])
def test_with_prefix_caching(
vllm_runner: VllmRunner,
max_tokens: int,
enforce_eager: bool,
chunk_size: int,
tensor_parallel_size: int,
dtype: str,
) -> None:
"""
Checks exact match decode with and without prefix caching
with chunked prefill enabled.
"""
model = "meta-llama/Llama-3.2-1B-Instruct"
# The common prompt has 142 tokens with Llama-2 tokenizer.
common_prompt = "You are a helpful AI assistant " * 20
unique_prompts = [
"Question", # Warmup
"Question", # Fully cached
"Another question", # Partial cached
]
full_prompts = [f"{common_prompt}\n{p}" for p in unique_prompts]
max_num_batched_tokens = max_num_seqs = chunk_size
outputs = {} # type: ignore
for enable in (True, False):
with vllm_runner(
model,
dtype=dtype,
max_num_batched_tokens=max_num_batched_tokens,
enable_chunked_prefill=True,
enable_prefix_caching=enable,
tensor_parallel_size=tensor_parallel_size,
enforce_eager=enforce_eager,
max_num_seqs=max_num_seqs,
) as vllm_model:
outputs[enable] = []
for prompt in full_prompts:
outputs[enable] += vllm_model.generate_greedy(
[prompt],
max_tokens,
)
check_outputs_equal(
outputs_0_lst=outputs[False],
outputs_1_lst=outputs[True],
name_0="w/o prefix caching",
name_1="with prefix caching",
)

View File

@ -1,49 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Compare the with and without prefix caching.
Run `pytest tests/prefix_caching/test_prefix_caching.py`.
"""
import pytest
from vllm import LLM
from vllm.distributed import cleanup_dist_env_and_memory
MODEL_LEN_LEN = [
# Example models with sliding window.
("bigcode/starcoder2-3b", 4096, 16384),
# ("mistralai/Mistral-7B-v0.1", 4096, 32768), << OOM in CI
# Confirm model with sliding window works.
# config has "use_sliding_window": false
("Qwen/Qwen1.5-0.5B-Chat", 32768, 32768),
# config has no sliding window attribute.
("TinyLlama/TinyLlama-1.1B-Chat-v1.0", 2048, 2048),
]
@pytest.mark.parametrize("model_len_len", MODEL_LEN_LEN)
def test_disable_sliding_window(model_len_len, ):
model, sliding_len, full_len = model_len_len
disabled_llm = LLM(model, disable_sliding_window=True)
disabled_llm.generate("Hi my name is")
model_config = disabled_llm.llm_engine.model_config
assert model_config.max_model_len == sliding_len, (
"Max len expected to equal sliding_len of %s, but got %s", sliding_len,
model_config.max_model_len)
del disabled_llm
cleanup_dist_env_and_memory()
enabled_llm = LLM(model,
enforce_eager=True,
disable_sliding_window=False,
enable_prefix_caching=False)
enabled_llm.generate("Hi my name is")
model_config = enabled_llm.llm_engine.model_config
assert model_config.max_model_len == full_len, (
"Max len expected to equal full_len of %s, but got %s", full_len,
model_config.max_model_len)
del enabled_llm
cleanup_dist_env_and_memory()

View File

@ -1,231 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""Compare the with and without prefix caching.
Run `pytest tests/prefix_caching/test_prefix_caching.py`.
"""
from __future__ import annotations
import pytest
from tests.conftest import VllmRunner
from tests.core.utils import SchedulerProxy, create_dummy_prompt
from vllm import SamplingParams, TokensPrompt
from vllm.core.scheduler import Scheduler
from vllm.engine.llm_engine import LLMEngine
from vllm.platforms import current_platform
from vllm.utils import STR_BACKEND_ENV_VAR
from ..models.utils import check_outputs_equal
@pytest.fixture(scope="function", autouse=True)
def use_v0_only(monkeypatch: pytest.MonkeyPatch):
"""
This module relies on V0 internals, so set VLLM_USE_V1=0.
"""
with monkeypatch.context() as m:
m.setenv('VLLM_USE_V1', '0')
yield
MODELS = [
"distilbert/distilgpt2",
]
UNSTABLE_PROMPT_SEQUENCE = [
([0] * 588) + ([1] * 1332) + ([2] * 30) + ([3] * 1),
([0] * 588) + ([1] * 1332) + ([4] * 3) + ([5] * 50),
([0] * 588) + ([1] * 1332) + ([2] * 30) + ([6] * 95),
([0] * 588) + ([1] * 1332) + ([4] * 3) + ([7] * 174),
([0] * 588) + ([8] * 1539),
]
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("backend", ["FLASH_ATTN", "FLASHINFER", "XFORMERS"])
@pytest.mark.parametrize("dtype", ["half"])
@pytest.mark.parametrize("max_tokens", [5])
@pytest.mark.parametrize("cached_position", [0, 1])
@pytest.mark.parametrize("enable_chunked_prefill", [True, False])
@pytest.mark.parametrize("block_size", [16])
def test_mixed_requests(
hf_runner,
vllm_runner,
example_prompts,
model: str,
backend: str,
dtype: str,
max_tokens: int,
cached_position: int,
enable_chunked_prefill: bool,
block_size: int,
monkeypatch: pytest.MonkeyPatch,
) -> None:
"""
Test the case when some sequences have the prefix cache hit
and the others don't. The cached position determines where
the sequence is at among the batch of prefills.
"""
if backend == "FLASHINFER" and current_platform.is_rocm():
pytest.skip("Flashinfer does not support ROCm/HIP.")
if backend == "XFORMERS" and current_platform.is_rocm():
pytest.skip("Xformers does not support ROCm/HIP.")
with monkeypatch.context() as m:
m.setenv(STR_BACKEND_ENV_VAR, backend)
with hf_runner(model, dtype=dtype) as hf_model:
hf_outputs = hf_model.generate_greedy(example_prompts, max_tokens)
cached_prompt = example_prompts[cached_position]
with vllm_runner(
model,
dtype=dtype,
enable_prefix_caching=True,
enable_chunked_prefill=enable_chunked_prefill,
block_size=block_size,
) as vllm_model:
# Run the first prompt so the cache is populated
vllm_outputs = vllm_model.generate_greedy([cached_prompt],
max_tokens)
# Run all the promopts
greedy_params = SamplingParams(temperature=0.0,
max_tokens=max_tokens)
req_outputs = vllm_model.llm.generate(example_prompts,
greedy_params)
# Verify number of cached tokens
for i in range(len(req_outputs)):
if i == cached_position:
expected_num_cached_tokens = (
len(req_outputs[i].prompt_token_ids) //
block_size) * block_size
else:
expected_num_cached_tokens = 0
assert (req_outputs[i].num_cached_tokens ==
expected_num_cached_tokens)
vllm_outputs = [(
output.prompt_token_ids + list(output.outputs[0].token_ids),
output.prompt + output.outputs[0].text,
) for output in req_outputs]
check_outputs_equal(
outputs_0_lst=hf_outputs,
outputs_1_lst=vllm_outputs,
name_0="hf",
name_1="vllm",
)
@pytest.mark.parametrize("backend", ["FLASH_ATTN", "FLASHINFER", "XFORMERS"])
def test_unstable_prompt_sequence(
vllm_runner,
backend: str,
monkeypatch: pytest.MonkeyPatch,
) -> None:
if backend == "FLASHINFER" and current_platform.is_rocm():
pytest.skip("Flashinfer does not support ROCm/HIP.")
if backend == "XFORMERS" and current_platform.is_rocm():
pytest.skip("Xformers does not support ROCm/HIP.")
with monkeypatch.context() as m:
m.setenv(STR_BACKEND_ENV_VAR, backend)
with vllm_runner(
"Qwen/Qwen2.5-0.5B-Instruct",
enable_chunked_prefill=True,
enable_prefix_caching=True,
max_model_len=4096,
) as vllm_model:
for prompt in UNSTABLE_PROMPT_SEQUENCE:
vllm_model.generate(TokensPrompt(prompt_token_ids=prompt),
SamplingParams(max_tokens=1))
@pytest.mark.parametrize("model", MODELS)
def test_fully_cached_prefill_needs_uncached_token(model):
block_size = 16
max_num_batched_tokens = 16
num_output_tokens = 5
# Make a vllm engine
runner = VllmRunner(
model_name=model,
gpu_memory_utilization=0.7,
enable_chunked_prefill=True,
enforce_eager=True,
enable_prefix_caching=True,
block_size=block_size,
max_num_batched_tokens=max_num_batched_tokens,
max_num_seqs=max_num_batched_tokens,
)
engine: LLMEngine = runner.llm.llm_engine
scheduler: Scheduler = SchedulerProxy(engine.scheduler[0]) # type: ignore
engine.scheduler[0] = scheduler
# SeqA
seqA_tokens = list(range(2 * block_size))
seqA, seq_groupA = create_dummy_prompt(
request_id="0",
prompt_tokens=seqA_tokens,
max_tokens=num_output_tokens,
block_size=block_size,
)
scheduler.add_seq_group(seq_groupA)
assert seqA.data.get_num_computed_tokens() == 0
# Prefill seqA
while not seqA.is_finished():
engine.step()
# seqB
seqB_tokens = [t + 1 for t in seqA_tokens] # shift by 1
seqB, seq_groupB = create_dummy_prompt(
request_id="1",
prompt_tokens=seqB_tokens,
max_tokens=num_output_tokens,
block_size=block_size,
)
# seqC is the same as seqA
seqC, seq_groupC = create_dummy_prompt(
request_id="2",
prompt_tokens=seqA_tokens,
max_tokens=num_output_tokens,
block_size=block_size,
)
scheduler.add_seq_group(seq_groupB)
scheduler.add_seq_group(seq_groupC)
# Even seqC is fully cached, it should not be prefilled since we
# require at least 1 uncached token.
engine.step()
sched_metas, sched_out, _ = scheduler.last_schedule_ret()
assert len(sched_out.scheduled_seq_groups) == 1
assert (sched_out.scheduled_seq_groups[0].seq_group.request_id ==
seq_groupB.request_id)
assert (sched_out.scheduled_seq_groups[0].token_chunk_size ==
max_num_batched_tokens)
# When seqB is finished, seqC could be prefilled.
while not seqB.is_finished():
engine.step()
sched_metas, sched_out, _ = scheduler.last_schedule_ret()
assert len(sched_out.scheduled_seq_groups) == 1
assert (sched_out.scheduled_seq_groups[0].seq_group.request_id ==
seq_groupB.request_id)
engine.step()
sched_metas, sched_out, _ = scheduler.last_schedule_ret()
assert len(sched_out.scheduled_seq_groups) == 1
assert (sched_out.scheduled_seq_groups[0].seq_group.request_id ==
seq_groupC.request_id)
assert sched_out.scheduled_seq_groups[0].token_chunk_size == len(
seqA_tokens)