[V0 Deprecation] Remove pooling model support in V0 (#23434)

Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
Signed-off-by: Max de Bayser <mbayser@br.ibm.com>
Co-authored-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
This commit is contained in:
Maximilien de Bayser
2025-08-29 04:04:02 -03:00
committed by GitHub
parent 934bebf192
commit 2554b27baa
38 changed files with 99 additions and 808 deletions

View File

@ -118,6 +118,8 @@ class PPTestSettings:
multi_node_only: bool = False,
load_format: Optional[str] = None,
):
vllm_major_versions = ["1"] if runner == "pooling" else ["0"]
return PPTestSettings(
parallel_setups=[
ParallelSetup(tp_size=tp_base,
@ -126,7 +128,7 @@ class PPTestSettings:
chunked_prefill=False),
],
distributed_backends=["mp"],
vllm_major_versions=["0"],
vllm_major_versions=vllm_major_versions,
runner=runner,
test_options=PPTestOptions(multi_node_only=multi_node_only,
load_format=load_format),
@ -213,7 +215,9 @@ TEXT_GENERATION_MODELS = {
EMBEDDING_MODELS = { # type: ignore[var-annotated]
# [Text-only]
"intfloat/e5-mistral-7b-instruct": PPTestSettings.fast(runner="pooling"),
"BAAI/bge-multilingual-gemma2": PPTestSettings.fast(runner="pooling"),
# TODO: re-enable when https://github.com/vllm-project/vllm/issues/23883
# is fixed
#"BAAI/bge-multilingual-gemma2": PPTestSettings.fast(runner="pooling"),
"Qwen/Qwen2.5-Math-RM-72B": PPTestSettings.fast(
load_format="dummy", runner="pooling"
),

View File

@ -16,14 +16,6 @@ MODEL_NAME = "jason9693/Qwen2.5-1.5B-apeach"
prompts = ["The chef prepared a delicious meal."]
@pytest.fixture(autouse=True)
def v1(run_with_both_engines):
# Simple autouse wrapper to run both engines for each test
# This can be promoted up to conftest.py to run for every
# test in a package
pass
@pytest.fixture(scope="module")
def llm():
# pytest caches the fixture so we use weakref.proxy to

View File

@ -27,14 +27,6 @@ TOKEN_IDS = [
]
@pytest.fixture(autouse=True)
def v1(run_with_both_engines):
# Simple autouse wrapper to run both engines for each test
# This can be promoted up to conftest.py to run for every
# test in a package
pass
@pytest.fixture(scope="module")
def llm():
# pytest caches the fixture so we use weakref.proxy to

View File

@ -16,14 +16,6 @@ MODEL_NAME = "internlm/internlm2-1_8b-reward"
prompts = ["The chef prepared a delicious meal."]
@pytest.fixture(autouse=True)
def v1(run_with_both_engines):
# Simple autouse wrapper to run both engines for each test
# This can be promoted up to conftest.py to run for every
# test in a package
pass
@pytest.fixture(scope="module")
def llm():
# pytest caches the fixture so we use weakref.proxy to

View File

@ -14,14 +14,6 @@ from ...models.utils import softmax
MODEL_NAME = "tomaarsen/Qwen3-Reranker-0.6B-seq-cls"
@pytest.fixture(autouse=True)
def v1(run_with_both_engines):
# Simple autouse wrapper to run both engines for each test
# This can be promoted up to conftest.py to run for every
# test in a package
pass
@pytest.fixture(scope="module")
def llm():
# pytest caches the fixture so we use weakref.proxy to

View File

@ -32,15 +32,16 @@ MODEL_CONFIGS = [
"tensor_parallel_size": 1,
"tokenizer_mode": "mistral",
},
{
"model": "sentence-transformers/all-MiniLM-L12-v2",
"enforce_eager": True,
"gpu_memory_utilization": 0.20,
"max_model_len": 64,
"max_num_batched_tokens": 64,
"max_num_seqs": 64,
"tensor_parallel_size": 1,
},
# TODO: re-enable once these tests are run with V1
# {
# "model": "sentence-transformers/all-MiniLM-L12-v2",
# "enforce_eager": True,
# "gpu_memory_utilization": 0.20,
# "max_model_len": 64,
# "max_num_batched_tokens": 64,
# "max_num_seqs": 64,
# "tensor_parallel_size": 1,
# },
]

View File

@ -24,14 +24,6 @@ DUMMY_CHAT_TEMPLATE = """{% for message in messages %}{{message['role'] + ': ' +
DTYPE = "bfloat16"
@pytest.fixture(autouse=True)
def v1(run_with_both_engines):
# Simple autouse wrapper to run both engines for each test
# This can be promoted up to conftest.py to run for every
# test in a package
pass
@pytest.fixture(scope="module")
def server():
args = [

View File

@ -14,14 +14,6 @@ MODEL_NAME = "BAAI/bge-reranker-base"
DTYPE = "bfloat16"
@pytest.fixture(autouse=True)
def v1(run_with_both_engines):
# Simple autouse wrapper to run both engines for each test
# This can be promoted up to conftest.py to run for every
# test in a package
pass
@pytest.fixture(scope="module")
def server():
args = ["--enforce-eager", "--max-model-len", "100", "--dtype", DTYPE]

View File

@ -12,15 +12,6 @@ from vllm.entrypoints.openai.protocol import ScoreResponse
from ...utils import RemoteOpenAIServer
@pytest.fixture(autouse=True)
def v1(run_with_both_engines):
# Simple autouse wrapper to run both engines for each test
# This can be promoted up to conftest.py to run for every
# test in a package
pass
MODELS = [
{
"name": "BAAI/bge-reranker-v2-m3",

View File

@ -10,14 +10,6 @@ from vllm.platforms import current_platform
from ...utils import check_embeddings_close, check_transformers_version
@pytest.fixture(autouse=True)
def v1(run_with_both_engines):
# Simple autouse wrapper to run both engines for each test
# This can be promoted up to conftest.py to run for every
# test in a package
pass
@pytest.mark.parametrize(
"model",
[
@ -32,21 +24,15 @@ def v1(run_with_both_engines):
"intfloat/e5-mistral-7b-instruct",
# CPU v1 doesn't support sliding window
marks=[pytest.mark.core_model]),
# the qwen models interfere with each other (see PR
# https://github.com/vllm-project/vllm/pull/18720).
# To avoid this problem, for now we skip v0 since it will be
# deprecated anyway.
pytest.param("ssmits/Qwen2-7B-Instruct-embed-base",
marks=[pytest.mark.skip_v0, pytest.mark.cpu_model]),
marks=[pytest.mark.cpu_model]),
# [Encoder-only]
pytest.param("BAAI/bge-base-en-v1.5", marks=[pytest.mark.core_model]),
pytest.param("sentence-transformers/all-MiniLM-L12-v2"),
pytest.param("intfloat/multilingual-e5-small"),
pytest.param("Alibaba-NLP/gte-Qwen2-1.5B-instruct",
marks=[pytest.mark.skip_v1]),
pytest.param("Alibaba-NLP/gte-Qwen2-1.5B-instruct"),
# [Cross-Encoder]
pytest.param("sentence-transformers/stsb-roberta-base-v2",
marks=[pytest.mark.skip_v1]),
pytest.param("sentence-transformers/stsb-roberta-base-v2"),
],
)
def test_models(

View File

@ -13,14 +13,6 @@ from ....conftest import HfRunner
from ...utils import check_transformers_version
@pytest.fixture(autouse=True)
def v1(run_with_both_engines):
# Simple autouse wrapper to run both engines for each test
# This can be promoted up to conftest.py to run for every
# test in a package
pass
@pytest.fixture
def math_step_prompts():
# ruff: noqa: E501

View File

@ -23,15 +23,6 @@ TEXTS_2 = [
"The capital of Germany is Berlin.",
]
@pytest.fixture(autouse=True)
def v1(run_with_both_engines):
# Simple autouse wrapper to run both engines for each test
# This can be promoted up to conftest.py to run for every
# test in a package
pass
DTYPE = "half"

View File

@ -323,8 +323,8 @@ _TEXT_GENERATION_EXAMPLE_MODELS = {
_EMBEDDING_EXAMPLE_MODELS = {
# [Text-only]
"BertModel": _HfExamplesInfo("BAAI/bge-base-en-v1.5", v0_only=True),
"Gemma2Model": _HfExamplesInfo("BAAI/bge-multilingual-gemma2", v0_only=True), # noqa: E501
"BertModel": _HfExamplesInfo("BAAI/bge-base-en-v1.5"),
"Gemma2Model": _HfExamplesInfo("BAAI/bge-multilingual-gemma2"), # noqa: E501
"GritLM": _HfExamplesInfo("parasail-ai/GritLM-7B-vllm"),
"GteModel": _HfExamplesInfo("Snowflake/snowflake-arctic-embed-m-v2.0",
trust_remote_code=True),
@ -337,9 +337,9 @@ _EMBEDDING_EXAMPLE_MODELS = {
"LlamaModel": _HfExamplesInfo("llama", is_available_online=False),
"MistralModel": _HfExamplesInfo("intfloat/e5-mistral-7b-instruct"),
"ModernBertModel": _HfExamplesInfo("Alibaba-NLP/gte-modernbert-base",
trust_remote_code=True, v0_only=True),
trust_remote_code=True),
"NomicBertModel": _HfExamplesInfo("nomic-ai/nomic-embed-text-v2-moe",
trust_remote_code=True, v0_only=True), # noqa: E501
trust_remote_code=True), # noqa: E501
"Qwen2Model": _HfExamplesInfo("ssmits/Qwen2-7B-Instruct-embed-base"),
"Qwen2ForRewardModel": _HfExamplesInfo("Qwen/Qwen2.5-Math-RM-72B",
max_transformers_version="4.53",
@ -347,9 +347,9 @@ _EMBEDDING_EXAMPLE_MODELS = {
"Qwen2ForProcessRewardModel": _HfExamplesInfo("Qwen/Qwen2.5-Math-PRM-7B",
max_transformers_version="4.53",
transformers_version_reason="HF model uses remote code that is not compatible with latest Transformers"), # noqa: E501
"RobertaModel": _HfExamplesInfo("sentence-transformers/stsb-roberta-base-v2", v0_only=True), # noqa: E501
"RobertaForMaskedLM": _HfExamplesInfo("sentence-transformers/all-roberta-large-v1", v0_only=True), # noqa: E501
"XLMRobertaModel": _HfExamplesInfo("intfloat/multilingual-e5-small", v0_only=True), # noqa: E501
"RobertaModel": _HfExamplesInfo("sentence-transformers/stsb-roberta-base-v2"), # noqa: E501
"RobertaForMaskedLM": _HfExamplesInfo("sentence-transformers/all-roberta-large-v1"), # noqa: E501
"XLMRobertaModel": _HfExamplesInfo("intfloat/multilingual-e5-small"), # noqa: E501
# [Multimodal]
"LlavaNextForConditionalGeneration": _HfExamplesInfo("royokong/e5-v"),
"Phi3VForCausalLM": _HfExamplesInfo("TIGER-Lab/VLM2Vec-Full",
@ -364,20 +364,19 @@ _SEQUENCE_CLASSIFICATION_EXAMPLE_MODELS = {
"GPT2ForSequenceClassification": _HfExamplesInfo("nie3e/sentiment-polish-gpt2-small"), # noqa: E501
# [Cross-encoder]
"BertForSequenceClassification": _HfExamplesInfo("cross-encoder/ms-marco-MiniLM-L-6-v2", v0_only=True), # noqa: E501
"BertForSequenceClassification": _HfExamplesInfo("cross-encoder/ms-marco-MiniLM-L-6-v2"), # noqa: E501
"GteNewForSequenceClassification": _HfExamplesInfo("Alibaba-NLP/gte-multilingual-reranker-base", # noqa: E501
trust_remote_code=True,
hf_overrides={
"architectures": ["GteNewForSequenceClassification"]}),# noqa: E501
"ModernBertForSequenceClassification": _HfExamplesInfo("Alibaba-NLP/gte-reranker-modernbert-base", v0_only=True), # noqa: E501
"RobertaForSequenceClassification": _HfExamplesInfo("cross-encoder/quora-roberta-base", v0_only=True), # noqa: E501
"XLMRobertaForSequenceClassification": _HfExamplesInfo("BAAI/bge-reranker-v2-m3", v0_only=True), # noqa: E501
"ModernBertForSequenceClassification": _HfExamplesInfo("Alibaba-NLP/gte-reranker-modernbert-base"), # noqa: E501
"RobertaForSequenceClassification": _HfExamplesInfo("cross-encoder/quora-roberta-base"), # noqa: E501
"XLMRobertaForSequenceClassification": _HfExamplesInfo("BAAI/bge-reranker-v2-m3"), # noqa: E501
}
_AUTOMATIC_CONVERTED_MODELS = {
# Use as_seq_cls_model for automatic conversion
"GemmaForSequenceClassification": _HfExamplesInfo("BAAI/bge-reranker-v2-gemma", # noqa: E501
v0_only=True,
hf_overrides={"architectures": ["GemmaForSequenceClassification"], # noqa: E501
"classifier_from_token": ["Yes"], # noqa: E501
"method": "no_post_processing"}), # noqa: E501

View File

@ -9,10 +9,7 @@ from vllm.attention import AttentionMetadata, AttentionMetadataBuilder
from vllm.attention.backends.abstract import AttentionBackend
from vllm.attention.backends.utils import CommonAttentionState
from vllm.model_executor import SamplingMetadata
from vllm.model_executor.pooling_metadata import PoolingMetadata
from vllm.worker.model_runner import ModelInputForGPUWithSamplingMetadata
from vllm.worker.pooling_model_runner import (
ModelInputForGPUWithPoolingMetadata)
class MockAttentionBackend(AttentionBackend):
@ -114,54 +111,3 @@ def test_model_runner_input():
assert (received_model_input.sampling_metadata.selected_token_indices ==
sampling_metadata.selected_token_indices)
assert received_model_input.sampling_metadata.seq_groups is None
def test_embedding_model_runner_input():
pooling_metadata = PoolingMetadata(
seq_groups=[[0]],
seq_data={},
prompt_lens=[1],
)
attn_metadata = AttentionMetadata(
num_prefills=1,
num_prefill_tokens=2,
num_decode_tokens=3,
slot_mapping=torch.zeros(1),
multi_modal_placeholder_index_maps=None,
enable_kv_scales_calculation=True,
)
model_input = ModelInputForGPUWithPoolingMetadata(
input_tokens=torch.ones(10),
input_positions=torch.ones(10),
pooling_metadata=pooling_metadata,
attn_metadata=attn_metadata)
assert isinstance(model_input, ModelInputForGPUWithPoolingMetadata)
# Test round trip serialization.
tensor_dict = model_input.as_broadcastable_tensor_dict()
attn_backend = MockAttentionBackend()
received_model_input = (
ModelInputForGPUWithPoolingMetadata.from_broadcasted_tensor_dict(
tensor_dict, attn_backend=attn_backend))
# Check that received copy has correct values.
assert isinstance(received_model_input,
ModelInputForGPUWithPoolingMetadata)
assert received_model_input.input_tokens is not None
assert (
received_model_input.input_tokens == model_input.input_tokens).all()
assert received_model_input.input_positions is not None
assert (received_model_input.input_positions == model_input.input_positions
).all()
assert received_model_input.multi_modal_kwargs is None
assert (received_model_input.multi_modal_kwargs ==
model_input.multi_modal_kwargs)
assert received_model_input.lora_requests is None
assert received_model_input.lora_requests == model_input.lora_requests
assert received_model_input.lora_mapping is None
assert received_model_input.lora_mapping == model_input.lora_mapping
for field in dataclasses.fields(AttentionMetadata):
assert getattr(received_model_input.attn_metadata, field.name,
None) == getattr(attn_metadata, field.name, None)
# Pooling metadata is not broadcast.
assert received_model_input.pooling_metadata is None

View File

@ -1591,7 +1591,6 @@ class Scheduler:
encoder_seq_data=encoder_seq_data,
cross_block_table=cross_block_table,
state=seq_group.state,
token_type_ids=seq_group.token_type_ids,
# `multi_modal_data` will only be present for the 1st comm
# between engine and worker.
# the subsequent comms can still use delta, but

View File

@ -1566,8 +1566,7 @@ class EngineArgs:
use_spec_decode = self.speculative_config is not None
if (is_gpu and not use_sliding_window and not use_spec_decode
and not self.enable_lora
and model_config.runner_type != "pooling"):
and not self.enable_lora):
self.enable_chunked_prefill = True
logger.warning(
"Chunked prefill is enabled by default for models "
@ -1585,10 +1584,6 @@ class EngineArgs:
"OOM during the initial memory profiling phase, or result "
"in low performance due to small KV cache size. Consider "
"setting --max-model-len to a smaller value.", max_model_len)
elif (self.enable_chunked_prefill
and model_config.runner_type == "pooling"):
msg = "Chunked prefill is not supported for pooling models"
raise ValueError(msg)
# if using prefix caching, we must set a hash algo
if self.enable_prefix_caching:

View File

@ -72,8 +72,8 @@ STOP_ITERATION = Exception() # Sentinel
class AsyncStream:
"""A stream of RequestOutputs or PoolingRequestOutputs for a request
that can be iterated over asynchronously via an async generator."""
"""A stream of RequestOutputs for a request that can be iterated over
asynchronously via an async generator."""
def __init__(self, request_id: str, cancel: Callable[[str], None]) -> None:
self.request_id = request_id
@ -81,8 +81,7 @@ class AsyncStream:
self._queue: asyncio.Queue = asyncio.Queue()
self._finished = False
def put(self, item: Union[RequestOutput, PoolingRequestOutput,
Exception]) -> None:
def put(self, item: Union[RequestOutput, Exception]) -> None:
if not self._finished:
self._queue.put_nowait(item)
@ -99,9 +98,7 @@ class AsyncStream:
def finished(self) -> bool:
return self._finished
async def generator(
self
) -> AsyncGenerator[Union[RequestOutput, PoolingRequestOutput], None]:
async def generator(self) -> AsyncGenerator[RequestOutput, None]:
try:
while True:
result = await self._queue.get()
@ -151,8 +148,7 @@ class RequestTracker:
self.abort_request(rid, exception=exc)
def process_request_output(self,
request_output: Union[RequestOutput,
PoolingRequestOutput],
request_output: RequestOutput,
*,
verbose: bool = False) -> None:
"""Process a request output from the engine."""
@ -261,9 +257,7 @@ class _AsyncLLMEngine(LLMEngine):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
async def step_async(
self, virtual_engine: int
) -> List[Union[RequestOutput, PoolingRequestOutput]]:
async def step_async(self, virtual_engine: int) -> List[RequestOutput]:
"""Performs one decoding iteration and returns newly generated results.
The workers are ran asynchronously if possible.
@ -405,7 +399,7 @@ class _AsyncLLMEngine(LLMEngine):
self,
request_id: str,
prompt: PromptType,
params: Union[SamplingParams, PoolingParams],
params: SamplingParams,
arrival_time: Optional[float] = None,
lora_request: Optional[LoRARequest] = None,
trace_headers: Optional[Mapping[str, str]] = None,
@ -779,14 +773,14 @@ class AsyncLLMEngine(EngineClient):
self,
request_id: str,
prompt: PromptType,
params: Union[SamplingParams, PoolingParams],
params: SamplingParams,
arrival_time: Optional[float] = None,
lora_request: Optional[LoRARequest] = None,
trace_headers: Optional[Mapping[str, str]] = None,
priority: int = 0,
data_parallel_rank: Optional[int] = None,
tokenization_kwargs: Optional[dict[str, Any]] = None,
) -> AsyncGenerator[Union[RequestOutput, PoolingRequestOutput], None]:
) -> AsyncGenerator[RequestOutput, None]:
if not self.is_running:
if self.start_engine_loop:
self.start_background_loop()
@ -908,7 +902,7 @@ class AsyncLLMEngine(EngineClient):
await self.abort(request_id)
raise
async def encode(
def encode(
self,
prompt: PromptType,
pooling_params: PoolingParams,
@ -918,85 +912,8 @@ class AsyncLLMEngine(EngineClient):
priority: int = 0,
tokenization_kwargs: Optional[dict[str, Any]] = None,
) -> AsyncGenerator[PoolingRequestOutput, None]:
"""Generate outputs for a request from a pooling model.
Generate outputs for a request. This method is a coroutine. It adds the
request into the waiting queue of the LLMEngine and streams the outputs
from the LLMEngine to the caller.
Args:
prompt: The prompt to the LLM. See
[`PromptType`][vllm.inputs.PromptType] for more details about
the format of each input.
pooling_params: The pooling parameters of the request.
request_id: The unique id of the request.
lora_request: LoRA request to use for generation, if any.
trace_headers: OpenTelemetry trace headers.
priority: The priority of the request.
Only applicable with priority scheduling.
Yields:
The output `PoolingRequestOutput` objects from the LLMEngine
for the request.
Details:
- If the engine is not running, start the background loop,
which iteratively invokes
[`vllm.engine.async_llm_engine.AsyncLLMEngine.engine_step`][]
to process the waiting requests.
- Add the request to the engine's `RequestTracker`.
On the next background loop, this request will be sent to
the underlying engine.
Also, a corresponding `AsyncStream` will be created.
- Wait for the request outputs from `AsyncStream` and yield them.
Example:
```
# Please refer to entrypoints/api_server.py for
# the complete example.
# initialize the engine and the example input
# note that engine_args here is AsyncEngineArgs instance
engine = AsyncLLMEngine.from_engine_args(engine_args)
example_input = {
"input": "What is LLM?",
"request_id": 0,
}
# start the generation
results_generator = engine.encode(
example_input["input"],
PoolingParams(),
example_input["request_id"])
# get the results
final_output = None
async for request_output in results_generator:
if await request.is_disconnected():
# Abort the request if the client disconnects.
await engine.abort(request_id)
# Return or raise an error
...
final_output = request_output
# Process and return the final output
...
```
"""
try:
async for output in await self.add_request(
request_id,
prompt,
pooling_params,
lora_request=lora_request,
trace_headers=trace_headers,
priority=priority,
tokenization_kwargs=tokenization_kwargs,
):
yield LLMEngine.validate_output(output, PoolingRequestOutput)
except asyncio.CancelledError:
await self.abort(request_id)
raise
raise NotImplementedError(
"Pooling models are not supported in vLLM V0")
async def abort(self, request_id: Union[str, Iterable[str]]) -> None:
"""Abort a request.
@ -1104,8 +1021,8 @@ class AsyncLLMEngine(EngineClient):
async def is_sleeping(self) -> bool:
return self.engine.is_sleeping()
async def add_lora(self, lora_request: LoRARequest) -> None:
self.engine.add_lora(lora_request)
async def add_lora(self, lora_request: LoRARequest) -> bool:
return self.engine.add_lora(lora_request)
async def collective_rpc(self,
method: str,

View File

@ -40,12 +40,11 @@ from vllm.multimodal.cache import processor_only_cache_from_config
from vllm.multimodal.processing import EncDecMultiModalProcessor
from vllm.outputs import (PoolingRequestOutput, RequestOutput,
RequestOutputFactory)
from vllm.pooling_params import PoolingParams
from vllm.sampling_params import RequestOutputKind, SamplingParams
from vllm.sequence import (ExecuteModelRequest, ParallelSampleSequenceGroup,
PoolingSequenceGroupOutput, Sequence, SequenceGroup,
SequenceGroupBase, SequenceGroupMetadata,
SequenceGroupOutput, SequenceStatus)
Sequence, SequenceGroup, SequenceGroupBase,
SequenceGroupMetadata, SequenceGroupOutput,
SequenceStatus)
from vllm.tracing import (SpanAttributes, SpanKind, extract_trace_context,
init_tracer)
from vllm.transformers_utils.detokenizer import Detokenizer
@ -93,8 +92,7 @@ class SchedulerContext:
def __init__(self) -> None:
self.output_queue: Deque[OutputData] = deque()
self.request_outputs: List[Union[RequestOutput,
PoolingRequestOutput]] = []
self.request_outputs: List[RequestOutput] = []
self.seq_group_metadata_list: Optional[
List[SequenceGroupMetadata]] = None
self.scheduler_outputs: Optional[SchedulerOutputs] = None
@ -261,7 +259,6 @@ class LLMEngine:
self.model_executor = executor_class(vllm_config=vllm_config)
if self.model_config.runner_type != "pooling":
self._initialize_kv_caches()
# If usage stat is enabled, collect relevant info.
@ -541,7 +538,7 @@ class LLMEngine:
self,
request_id: str,
processed_inputs: ProcessorInputs,
params: Union[SamplingParams, PoolingParams],
params: SamplingParams,
arrival_time: float,
lora_request: Optional[LoRARequest],
trace_headers: Optional[Mapping[str, str]] = None,
@ -577,7 +574,7 @@ class LLMEngine:
encoder_seq = (None if encoder_inputs is None else Sequence(
seq_id, encoder_inputs, block_size, eos_token_id, lora_request))
# Create a SequenceGroup based on SamplingParams or PoolingParams
# Create a SequenceGroup based on SamplingParams
if isinstance(params, SamplingParams):
seq_group = self._create_sequence_group_with_sampling(
request_id,
@ -588,18 +585,8 @@ class LLMEngine:
trace_headers=trace_headers,
encoder_seq=encoder_seq,
priority=priority)
elif isinstance(params, PoolingParams):
seq_group = self._create_sequence_group_with_pooling(
request_id,
seq,
params,
arrival_time=arrival_time,
lora_request=lora_request,
encoder_seq=encoder_seq,
priority=priority)
else:
raise ValueError(
"Either SamplingParams or PoolingParams must be provided.")
raise ValueError("SamplingParams must be provided.")
# Add the sequence group to the scheduler with least unfinished seqs.
costs = [
@ -618,7 +605,7 @@ class LLMEngine:
self,
request_id: str,
prompt: PromptType,
params: Union[SamplingParams, PoolingParams],
params: SamplingParams,
arrival_time: Optional[float] = None,
lora_request: Optional[LoRARequest] = None,
tokenization_kwargs: Optional[dict[str, Any]] = None,
@ -636,9 +623,8 @@ class LLMEngine:
prompt: The prompt to the LLM. See
[PromptType][vllm.inputs.PromptType]
for more details about the format of each input.
params: Parameters for sampling or pooling.
params: Parameters for sampling.
[SamplingParams][vllm.SamplingParams] for text generation.
[PoolingParams][vllm.PoolingParams] for pooling.
arrival_time: The arrival time of the request. If None, we use
the current monotonic time.
lora_request: The LoRA request to add.
@ -760,29 +746,6 @@ class LLMEngine:
return seq_group
def _create_sequence_group_with_pooling(
self,
request_id: str,
seq: Sequence,
pooling_params: PoolingParams,
arrival_time: float,
lora_request: Optional[LoRARequest],
encoder_seq: Optional[Sequence] = None,
priority: int = 0,
) -> SequenceGroup:
"""Creates a SequenceGroup with PoolingParams."""
# Defensive copy of PoolingParams, which are used by the pooler
pooling_params = pooling_params.clone()
# Create the sequence group.
seq_group = SequenceGroup(request_id=request_id,
seqs=[seq],
arrival_time=arrival_time,
lora_request=lora_request,
pooling_params=pooling_params,
encoder_seq=encoder_seq,
priority=priority)
return seq_group
def abort_request(self, request_id: Union[str, Iterable[str]]) -> None:
"""Aborts a request(s) with the given ID.
@ -856,18 +819,6 @@ class LLMEngine:
success = success and scheduler.reset_prefix_cache(device)
return success
@staticmethod
def _process_sequence_group_outputs(
seq_group: SequenceGroup,
outputs: List[PoolingSequenceGroupOutput],
) -> None:
seq_group.pooled_data = outputs[0].data
for seq in seq_group.get_seqs():
seq.status = SequenceStatus.FINISHED_STOPPED
return
def _process_model_outputs(self,
ctx: SchedulerContext,
request_id: Optional[str] = None) -> None:
@ -962,13 +913,10 @@ class LLMEngine:
seq_group.metrics.model_execute_time = (
o.model_execute_time)
if self.model_config.runner_type == "pooling":
self._process_sequence_group_outputs(seq_group, output)
else:
self.output_processor.process_prompt_logprob(seq_group, output)
if seq_group_meta.do_sample:
self.output_processor.process_outputs(
seq_group, output, is_async)
self.output_processor.process_outputs(seq_group, output,
is_async)
if seq_group.is_finished():
finished_now.append(i)
@ -1090,7 +1038,7 @@ class LLMEngine:
seq.append_token_id(sample.output_token, sample.logprobs,
sample.output_embed)
def step(self) -> List[Union[RequestOutput, PoolingRequestOutput]]:
def step(self) -> List[RequestOutput]:
"""Performs one decoding iteration and returns newly generated results.
<figure markdown="span">

View File

@ -120,6 +120,7 @@ class RPCLoadAdapterRequest:
@dataclass
class RPCAdapterLoadedResponse:
request_id: str
lora_loaded: bool
RPC_REQUEST_T = Union[RPCProcessRequest, RPCAbortRequest, RPCStartupRequest,

View File

@ -6,7 +6,7 @@ import copy
import pickle
from contextlib import contextmanager, suppress
from typing import (Any, AsyncGenerator, Dict, Iterable, Iterator, List,
Mapping, Optional, Union, cast)
Mapping, Optional, Union)
import cloudpickle
import psutil
@ -477,10 +477,8 @@ class MQLLMEngineClient(EngineClient):
Any priority other than 0 will lead to an error if the
scheduling policy is not "priority".
"""
return cast(
AsyncGenerator[RequestOutput, None],
self._process_request(prompt, sampling_params, request_id,
lora_request, trace_headers, priority))
return self._process_request(prompt, sampling_params, request_id,
lora_request, trace_headers, priority)
def encode(
self,
@ -490,45 +488,20 @@ class MQLLMEngineClient(EngineClient):
lora_request: Optional[LoRARequest] = None,
trace_headers: Optional[Mapping[str, str]] = None,
priority: int = 0,
tokenization_kwargs: Optional[dict[str, Any]] = None,
) -> AsyncGenerator[PoolingRequestOutput, None]:
"""Generate outputs for a request from a pooling model.
Generate outputs for a request. This method is a coroutine. It adds the
request into the waiting queue of the LLMEngine and streams the outputs
from the LLMEngine to the caller.
Args:
prompt: The prompt to the LLM. See
[`PromptType`][vllm.inputs.PromptType] for more details about
the format of each input.
pooling_params: The pooling parameters of the request.
request_id: The unique id of the request.
lora_request: LoRA request to use for generation, if any.
trace_headers: OpenTelemetry trace headers.
Yields:
The output `PoolingRequestOutput` objects from the LLMEngine
for the request.
"""
return cast(
AsyncGenerator[PoolingRequestOutput, None],
self._process_request(prompt,
pooling_params,
request_id,
lora_request,
trace_headers,
priority=priority))
raise NotImplementedError(
"Pooling models are not supported in vLLM V0")
async def _process_request(
self,
prompt: PromptType,
params: Union[SamplingParams, PoolingParams],
params: SamplingParams,
request_id: str,
lora_request: Optional[LoRARequest] = None,
trace_headers: Optional[Mapping[str, str]] = None,
priority: int = 0,
) -> Union[AsyncGenerator[RequestOutput, None], AsyncGenerator[
PoolingRequestOutput, None]]:
) -> AsyncGenerator[RequestOutput, None]:
"""Send an RPCGenerateRequest to the RPCServer and stream responses."""
# If already dead, error out.
@ -547,7 +520,7 @@ class MQLLMEngineClient(EngineClient):
try:
# 2) Detach logits processors so that they can be pickled
# separately (may require cloudpickle which is slower)
if isinstance(params, SamplingParams) and params.logits_processors:
if params.logits_processors:
# Defensive shallow copy
params = copy.copy(params)
logits_processors = params.logits_processors
@ -646,13 +619,14 @@ class MQLLMEngineClient(EngineClient):
raise request_output
return request_output.is_sleeping
async def add_lora(self, lora_request: LoRARequest) -> None:
async def add_lora(self, lora_request: LoRARequest) -> bool:
"""Load a new LoRA adapter into the engine for future requests."""
# Uses the same I/O as generate requests
request = RPCLoadAdapterRequest(lora_request)
# Create output queue for this request.
queue: asyncio.Queue[Union[None, BaseException]] = asyncio.Queue()
queue: asyncio.Queue[Union[
BaseException, RPCAdapterLoadedResponse]] = asyncio.Queue()
self.output_queues[request.request_id] = queue
# Send the request
@ -666,3 +640,4 @@ class MQLLMEngineClient(EngineClient):
# Raise on error, otherwise happily return None
if isinstance(request_output, BaseException):
raise request_output
return request_output.lora_loaded

View File

@ -347,7 +347,7 @@ class MQLLMEngine:
def _handle_load_adapter_request(self, request: RPCLoadAdapterRequest):
try:
self.engine.add_lora(request.lora_request)
lora_loaded = self.engine.add_lora(request.lora_request)
except BaseException as e:
# Send back an error if the adater fails to load
rpc_err = RPCError(request_id=request.request_id,
@ -357,7 +357,8 @@ class MQLLMEngine:
return
# Otherwise, send back the successful load message
self._send_outputs(
RPCAdapterLoadedResponse(request_id=request.request_id))
RPCAdapterLoadedResponse(request_id=request.request_id,
lora_loaded=lora_loaded))
def _handle_is_sleeping_request(self, request: RPCIsSleepingRequest):
is_sleeping = self.is_sleeping()

View File

@ -3,7 +3,7 @@
import asyncio
from abc import ABC, abstractmethod
from typing import AsyncGenerator, Iterable, Mapping, Optional, Union
from typing import Any, AsyncGenerator, Iterable, Mapping, Optional, Union
from vllm.beam_search import BeamSearchSequence, create_sort_beams_key_function
from vllm.config import DecodingConfig, ModelConfig, VllmConfig
@ -224,6 +224,7 @@ class EngineClient(ABC):
lora_request: Optional[LoRARequest] = None,
trace_headers: Optional[Mapping[str, str]] = None,
priority: int = 0,
tokenization_kwargs: Optional[dict[str, Any]] = None,
) -> AsyncGenerator[PoolingRequestOutput, None]:
"""Generate outputs for a request from a pooling model."""
...
@ -320,7 +321,7 @@ class EngineClient(ABC):
...
@abstractmethod
async def add_lora(self, lora_request: LoRARequest) -> None:
async def add_lora(self, lora_request: LoRARequest) -> bool:
"""Load a new LoRA adapter into the engine for future requests."""
...

View File

@ -1156,8 +1156,7 @@ class LLM:
tokenization_kwargs=tokenization_kwargs,
)
if envs.VLLM_USE_V1 and (token_type_ids := engine_prompt.pop(
"token_type_ids", None)):
if (token_type_ids := engine_prompt.pop("token_type_ids", None)):
params = pooling_params.clone()
compressed = compress_token_type_ids(token_type_ids)
params.extra_kwargs = {"compressed_token_type_ids": compressed}

View File

@ -7,7 +7,6 @@ from typing import Any, Optional, Union
from fastapi import Request
from vllm import envs
from vllm.config import ModelConfig
from vllm.engine.protocol import EngineClient
from vllm.entrypoints.logger import RequestLogger
@ -229,8 +228,7 @@ class ServingScores(OpenAIServing):
params=default_pooling_params,
lora_request=lora_request)
if envs.VLLM_USE_V1 and (token_type_ids := engine_prompt.pop(
"token_type_ids", None)):
if (token_type_ids := engine_prompt.pop("token_type_ids", None)):
pooling_params = default_pooling_params.clone()
compressed = compress_token_type_ids(token_type_ids)
pooling_params.extra_kwargs = {

View File

@ -174,9 +174,6 @@ class TokenInputs(TypedDict):
prompt_token_ids: list[int]
"""The token IDs of the prompt."""
token_type_ids: NotRequired[list[int]]
"""The token type IDs of the prompt."""
prompt: NotRequired[str]
"""
The original prompt text corresponding to the token IDs, if available.
@ -190,7 +187,6 @@ class TokenInputs(TypedDict):
def token_inputs(
prompt_token_ids: list[int],
token_type_ids: Optional[list[int]] = None,
prompt: Optional[str] = None,
cache_salt: Optional[str] = None,
) -> TokenInputs:
@ -200,8 +196,6 @@ def token_inputs(
if prompt is not None:
inputs["prompt"] = prompt
if token_type_ids is not None:
inputs["token_type_ids"] = token_type_ids
if cache_salt is not None:
inputs["cache_salt"] = cache_salt

View File

@ -355,7 +355,6 @@ class InputPreprocessor:
mm_hash_overrides: Optional[dict[str, list[str]]] = None,
) -> Union[TokenInputs, MultiModalInputs]:
prompt_token_ids = parsed_content["prompt_token_ids"]
token_type_ids = parsed_content.get("token_type_ids")
inputs: Union[TokenInputs, MultiModalInputs]
if multi_modal_data := parsed_content.get("multi_modal_data"):
@ -368,10 +367,7 @@ class InputPreprocessor:
mm_hash_overrides=mm_hash_overrides,
)
else:
inputs = token_inputs(
prompt_token_ids=prompt_token_ids,
token_type_ids=token_type_ids,
)
inputs = token_inputs(prompt_token_ids=prompt_token_ids)
if cache_salt := parsed_content.get("cache_salt"):
inputs["cache_salt"] = cache_salt
@ -387,7 +383,6 @@ class InputPreprocessor:
mm_hash_overrides: Optional[dict[str, list[str]]] = None,
) -> Union[TokenInputs, MultiModalInputs]:
prompt_token_ids = parsed_content["prompt_token_ids"]
token_type_ids = parsed_content.get("token_type_ids")
inputs: Union[TokenInputs, MultiModalInputs]
if multi_modal_data := parsed_content.get("multi_modal_data"):
@ -400,10 +395,7 @@ class InputPreprocessor:
mm_hash_overrides=mm_hash_overrides,
)
else:
inputs = token_inputs(
prompt_token_ids=prompt_token_ids,
token_type_ids=token_type_ids,
)
inputs = token_inputs(prompt_token_ids=prompt_token_ids, )
if cache_salt := parsed_content.get("cache_salt"):
inputs["cache_salt"] = cache_salt

View File

@ -13,17 +13,12 @@ import torch.nn.functional as F
from transformers import PretrainedConfig
from vllm.config import ModelConfig, PoolerConfig
from vllm.model_executor.pooling_metadata import ( # noqa: E501
PoolingMetadata as V0PoolingMetadata)
from vllm.model_executor.pooling_metadata import PoolingTensors
from vllm.pooling_params import PoolingParams
from vllm.sequence import PoolerOutput, PoolingSequenceGroupOutput
from vllm.tasks import PoolingTask
from vllm.utils import current_stream, resolve_obj_by_qualname
from vllm.v1.pool.metadata import PoolingCursor
from vllm.v1.pool.metadata import PoolingMetadata as V1PoolingMetadata
from vllm.v1.pool.metadata import PoolingCursor, PoolingMetadata
PoolingMetadata = Union[V0PoolingMetadata, V1PoolingMetadata]
PoolingFn = Callable[
[Union[torch.Tensor, list[torch.Tensor]], PoolingMetadata],
Union[torch.Tensor, list[torch.Tensor]]]
@ -127,16 +122,11 @@ def get_prompt_lens(
hidden_states: Union[torch.Tensor, list[torch.Tensor]],
pooling_metadata: PoolingMetadata,
) -> torch.Tensor:
if isinstance(pooling_metadata, V1PoolingMetadata):
return pooling_metadata.prompt_lens
return PoolingTensors.from_pooling_metadata(
pooling_metadata, hidden_states[0].device).prompt_lens
def get_prompt_token_ids(
pooling_metadata: PoolingMetadata) -> list[torch.Tensor]:
if isinstance(pooling_metadata, V1PoolingMetadata):
assert pooling_metadata.prompt_token_ids is not None, (
"Please set `requires_token_ids=True` in `get_pooling_updates`")
@ -145,17 +135,9 @@ def get_prompt_token_ids(
for i, num in enumerate(pooling_metadata.prompt_lens)
]
return [
torch.tensor(seq_data_i.prompt_token_ids)
for seq_data_i in pooling_metadata.seq_data.values()
]
def get_pooling_params(
pooling_metadata: PoolingMetadata) -> list[PoolingParams]:
if isinstance(pooling_metadata, V0PoolingMetadata):
pooling_params = [p for _, p in pooling_metadata.seq_groups]
else:
pooling_params = pooling_metadata.pooling_params
return pooling_params

View File

@ -24,9 +24,9 @@ from vllm.model_executor.layers.pooler import (ClassifierPooler,
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.vocab_parallel_embedding import (
VocabParallelEmbedding)
from vllm.model_executor.pooling_metadata import PoolingMetadata
from vllm.sequence import IntermediateTensors
from vllm.tasks import PoolingTask
from vllm.v1.pool.metadata import PoolingMetadata
from .interfaces import SupportsCrossEncoding, SupportsQuant
from .interfaces_base import default_pooling_type

View File

@ -15,10 +15,10 @@ from vllm.model_executor.layers.pooler import (DispatchPooler, Pooler,
build_output, get_prompt_lens,
get_prompt_token_ids)
from vllm.model_executor.models.llama import LlamaForCausalLM
from vllm.model_executor.pooling_metadata import PoolingMetadata
from vllm.sequence import PoolerOutput
from vllm.tasks import PoolingTask
from vllm.transformers_utils.tokenizer import cached_tokenizer_from_config
from vllm.v1.pool.metadata import PoolingMetadata
from .interfaces_base import default_pooling_type

View File

@ -22,9 +22,9 @@ from vllm.model_executor.layers.rotary_embedding import RotaryEmbedding
from vllm.model_executor.layers.vocab_parallel_embedding import (
VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.pooling_metadata import PoolingMetadata
from vllm.sequence import IntermediateTensors
from vllm.tasks import PoolingTask
from vllm.v1.pool.metadata import PoolingMetadata
from .interfaces import SupportsCrossEncoding
from .interfaces_base import default_pooling_type

View File

@ -1,90 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from dataclasses import dataclass
from typing import Any, Optional
import torch
from vllm.pooling_params import PoolingParams
from vllm.utils import is_pin_memory_available
from vllm.v1.pool.metadata import PoolingCursor, build_pooling_cursor
class PoolingMetadata:
"""Metadata for pooling operations in the Pooler layer.
This class holds the necessary information for pooling operations,
providing context for how to perform pooling and other related operations.
Attributes:
seq_groups: List of (seq_ids, pooling_params).
seq_data: A mapping of sequence ID to additional sequence data.
prompt_lens: List of the lengths of each prompt.
"""
def __init__(
self,
seq_groups: list[tuple[list[int], PoolingParams]],
seq_data: dict[int, Any], # Specific data related to sequences
prompt_lens: list[int],
pooling_cursor: Optional[PoolingCursor] = None) -> None:
self.seq_groups = seq_groups
self.seq_data = seq_data
self.prompt_lens = prompt_lens
self.pooling_cursor: Optional[PoolingCursor] = pooling_cursor
def __repr__(self) -> str:
return ("PoolingMetadata("
f"seq_groups={self.seq_groups}, "
f"seq_data={self.seq_data}, "
f"prompt_lens={self.prompt_lens})")
def __getitem__(self, indices: slice):
return PoolingMetadata(
seq_groups=self.seq_groups[indices],
seq_data=dict(list(self.seq_data.items())[indices]),
prompt_lens=self.prompt_lens[indices],
pooling_cursor=None
if self.pooling_cursor is None else self.pooling_cursor[indices],
)
def build_pooling_cursor(self, num_scheduled_tokens: list[int],
device: torch.device):
prompt_lens = torch.tensor(self.prompt_lens, device="cpu")
self.pooling_cursor = build_pooling_cursor(num_scheduled_tokens,
prompt_lens,
device=device)
@dataclass
class PoolingTensors:
"""Tensors for pooling."""
prompt_lens: torch.Tensor
@classmethod
def from_pooling_metadata(
cls,
pooling_metadata: "PoolingMetadata",
device: torch.device,
) -> "PoolingTensors":
"""
Create PoolingTensors from PoolingMetadata.
Args:
pooling_metadata: PoolingMetadata instance to convert.
device: Device to store the tensors.
"""
# Convert prompt lengths to tensor
pin_memory = is_pin_memory_available()
prompt_lens_t = torch.tensor(
pooling_metadata.prompt_lens,
device="cpu",
dtype=torch.long,
pin_memory=pin_memory,
)
return cls(prompt_lens=prompt_lens_t.to(device=device,
non_blocking=True), )

View File

@ -913,9 +913,6 @@ class MultiModalInputs(TypedDict):
prompt_token_ids: list[int]
"""The processed token IDs which includes placeholder tokens."""
token_type_ids: NotRequired[list[int]]
"""The token type IDs of the prompt."""
mm_kwargs: MultiModalKwargsOptionalItems
"""Keyword arguments to be directly passed to the model after batching."""
@ -946,6 +943,3 @@ class MultiModalEncDecInputs(MultiModalInputs):
encoder_prompt_token_ids: list[int]
"""The processed token IDs of the encoder prompt."""
encoder_token_type_ids: NotRequired[list[int]]
"""The token type IDs of the encoder prompt."""

View File

@ -508,12 +508,6 @@ class Sequence:
return [0] * len(self.inputs["prompt_embeds"])
return self.inputs["prompt_token_ids"]
@property
def token_type_ids(self) -> list[int]:
if self.inputs["type"] == "embeds":
return []
return self.inputs.get("token_type_ids", [])
@property
def multi_modal_data(self) -> MultiModalKwargs:
if self.inputs["type"] == "multimodal":
@ -765,10 +759,6 @@ class SequenceGroup:
return (self.encoder_seq.prompt_token_ids
if self.encoder_seq is not None else None)
@property
def token_type_ids(self) -> Optional[list[int]]:
return self.first_seq.token_type_ids
@property
def multi_modal_data(self) -> MultiModalKwargs:
if self.first_seq.multi_modal_data:
@ -972,7 +962,6 @@ class SequenceGroupMetadata(
computed_block_nums: Optional[list[int]] = None
state: Optional[SequenceGroupState] = msgspec.field(
default_factory=lambda: SequenceGroupState())
token_type_ids: Optional[list[int]] = None
multi_modal_data: Optional[MultiModalKwargs] = None
multi_modal_placeholders: Optional[MultiModalPlaceholderDict] = None
encoder_seq_data: Optional[SequenceData] = None

View File

@ -24,8 +24,7 @@ from vllm.multimodal import (MULTIMODAL_REGISTRY, MultiModalKwargs,
MultiModalRegistry)
from vllm.platforms import _Backend
from vllm.sampling_params import SamplingParams
from vllm.sequence import (IntermediateTensors, PoolerOutput,
SequenceGroupMetadata)
from vllm.sequence import IntermediateTensors, SequenceGroupMetadata
from vllm.utils import STR_NOT_IMPL_ENC_DEC_BACKEND, make_tensor_with_pad
from vllm.worker.model_runner import (GPUModelRunnerBase,
ModelInputForGPUBuilder,
@ -161,7 +160,7 @@ class EncoderDecoderModelRunner(GPUModelRunnerBase[EncoderDecoderModelInput]):
kv_caches: List[torch.Tensor],
intermediate_tensors: Optional[IntermediateTensors] = None,
num_steps: int = 1,
) -> Optional[List[PoolerOutput]]:
) -> Optional[List[SamplerOutput]]:
if num_steps > 1:
raise ValueError("num_steps > 1 is not supported in "
"EncoderDecoderModelRunner")

View File

@ -86,7 +86,6 @@ class ModelInputForGPU(ModelRunnerInputBase):
input_tokens: Optional[torch.Tensor] = None
inputs_embeds: Optional[torch.Tensor] = None
input_positions: Optional[torch.Tensor] = None
token_types: Optional[torch.Tensor] = None
seq_lens: Optional[List[int]] = None
query_lens: Optional[List[int]] = None
lora_mapping: Optional["LoRAMapping"] = None
@ -192,7 +191,6 @@ class ModelInputForGPUBuilder(ModelRunnerInputBuilderBase[ModelInputForGPU]):
self.input_tokens[0].clear() # type: ignore
self.inputs_embeds = None # type: ignore
self.input_positions[0].clear() # type: ignore
self.token_types[0].clear() # type: ignore
self.mrope_input_positions = None # type: ignore
self.seq_lens[0] = 0 # type: ignore
self.orig_seq_lens[0] = 0 # type: ignore
@ -219,7 +217,6 @@ class ModelInputForGPUBuilder(ModelRunnerInputBuilderBase[ModelInputForGPU]):
input_tokens: Optional[List[List[int]]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
input_positions: Optional[List[List[int]]] = None,
token_types: Optional[List[List[int]]] = None,
mrope_input_positions: Optional[List[List[List[int]]]] = None,
# The sequence length (may be capped to the sliding window).
@ -284,12 +281,6 @@ class ModelInputForGPUBuilder(ModelRunnerInputBuilderBase[ModelInputForGPU]):
for seq_id in range(len(self.seq_ids)):
self.input_positions[seq_id].clear()
if token_types:
self.token_types = token_types
else:
for seq_id in range(len(self.seq_ids)):
self.token_types[seq_id].clear()
self.mrope_input_positions = None
if seq_lens:
@ -348,7 +339,6 @@ class ModelInputForGPUBuilder(ModelRunnerInputBuilderBase[ModelInputForGPU]):
self.input_tokens = input_tokens or []
self.inputs_embeds = inputs_embeds
self.input_positions = input_positions or []
self.token_types = token_types or []
self.mrope_input_positions = mrope_input_positions or None
self.seq_lens = seq_lens or []
self.orig_seq_lens = orig_seq_lens or []
@ -376,7 +366,6 @@ class ModelInputForGPUBuilder(ModelRunnerInputBuilderBase[ModelInputForGPU]):
self.input_tokens = [[] for _ in range(self.n_seqs)]
self.input_positions = [[] for _ in range(self.n_seqs)]
self.token_types = [[] for _ in range(self.n_seqs)]
self.mrope_input_positions = None
self.seq_lens = [0] * self.n_seqs
self.orig_seq_lens = [0] * self.n_seqs
@ -400,7 +389,6 @@ class ModelInputForGPUBuilder(ModelRunnerInputBuilderBase[ModelInputForGPU]):
f"inputs_embeds.shape="
f"{getattr(self.inputs_embeds, 'shape', None)}, "
f"input_positions={self.input_positions}, "
f"token_types={self.token_types}, "
f"mrope_input_positions={self.mrope_input_positions}, "
f"seq_lens={self.seq_lens}, "
f"orig_seq_lens={self.orig_seq_lens}, "
@ -522,8 +510,6 @@ class ModelInputForGPUBuilder(ModelRunnerInputBuilderBase[ModelInputForGPU]):
prompt_embeds = seq_data.get_token_embeddings(
)[context_len:seq_len]
token_types = seq_group_metadata.token_type_ids
inter_data.seq_lens[seq_idx] = seq_len
inter_data.orig_seq_lens[seq_idx] = seq_len
inter_data.prompt_lens[seq_idx] = seq_data.get_prompt_len()
@ -531,8 +517,6 @@ class ModelInputForGPUBuilder(ModelRunnerInputBuilderBase[ModelInputForGPU]):
inter_data.input_tokens[seq_idx].extend(tokens)
inter_data.inputs_embeds = prompt_embeds
inter_data.input_positions[seq_idx].extend(range(context_len, seq_len))
inter_data.token_types[seq_idx].extend(
token_types if token_types else [])
inter_data.query_lens[seq_idx] = seq_len - context_len
if seq_data.mrope_position_delta is not None:
@ -590,8 +574,6 @@ class ModelInputForGPUBuilder(ModelRunnerInputBuilderBase[ModelInputForGPU]):
seq_idx][uncomputed_start:]
inter_data.input_positions[seq_idx] = inter_data.input_positions[
seq_idx][uncomputed_start:]
inter_data.token_types[seq_idx] = inter_data.token_types[seq_idx][
uncomputed_start:]
context_len = prefix_cache_len
inter_data.context_lens[seq_idx] = context_len
@ -606,8 +588,6 @@ class ModelInputForGPUBuilder(ModelRunnerInputBuilderBase[ModelInputForGPU]):
seq_idx][-1:]
inter_data.input_positions[seq_idx] = inter_data.input_positions[
seq_idx][-1:]
inter_data.token_types[seq_idx] = inter_data.token_types[seq_idx][
-1:]
inter_data.query_lens[seq_idx] = 1
inter_data.context_lens[seq_idx] = inter_data.seq_lens[seq_idx] - 1
@ -802,12 +782,9 @@ class ModelInputForGPUBuilder(ModelRunnerInputBuilderBase[ModelInputForGPU]):
# Combine and flatten intermediate data.
input_tokens = list[int]()
inputs_embeds_list = list[torch.Tensor]()
token_types = list[int]()
for inter_data in self.inter_data_list:
for cur_input_tokens in inter_data.input_tokens:
input_tokens.extend(cur_input_tokens)
for cur_token_types in inter_data.token_types:
token_types.extend(cur_token_types)
if inter_data.inputs_embeds is not None:
inputs_embeds_list.append(
inter_data.inputs_embeds.to(
@ -890,11 +867,6 @@ class ModelInputForGPUBuilder(ModelRunnerInputBuilderBase[ModelInputForGPU]):
self.runner.device,
self.runner.pin_memory)
token_types_tensor = async_tensor_h2d(token_types, torch.long,
self.runner.device,
self.runner.pin_memory) \
if token_types else None
if mrope_input_positions is not None:
for idx in range(3):
mrope_input_positions[idx].extend(
@ -951,7 +923,6 @@ class ModelInputForGPUBuilder(ModelRunnerInputBuilderBase[ModelInputForGPU]):
input_tokens=input_tokens_tensor,
inputs_embeds=inputs_embeds,
input_positions=input_positions_tensor,
token_types=token_types_tensor,
attn_metadata=attn_metadata,
seq_lens=seq_lens,
query_lens=query_lens,

View File

@ -13,10 +13,9 @@ from vllm.config import VllmConfig
from vllm.logger import init_logger
from vllm.model_executor.layers.sampler import SamplerOutput
from vllm.model_executor.models.interfaces import supports_transcription
from vllm.model_executor.models.interfaces_base import (
is_pooling_model, is_text_generation_model)
from vllm.model_executor.models.interfaces_base import is_text_generation_model
from vllm.sequence import IntermediateTensors, SequenceGroupMetadata
from vllm.tasks import GenerationTask, PoolingTask, SupportedTask
from vllm.tasks import GenerationTask, SupportedTask
if TYPE_CHECKING:
from vllm.attention import AttentionMetadata
@ -241,20 +240,11 @@ class ModelRunnerBase(ABC, Generic[T]):
return supported_tasks
def get_supported_pooling_tasks(self) -> list[PoolingTask]:
model = self.get_model()
if not is_pooling_model(model):
return []
return list(model.pooler.get_supported_tasks())
def get_supported_tasks(self) -> tuple[SupportedTask, ...]:
tasks = list[SupportedTask]()
if self.model_config.runner_type == "generate":
tasks.extend(self.get_supported_generation_tasks())
if self.model_config.runner_type == "pooling":
tasks.extend(self.get_supported_pooling_tasks())
return tuple(tasks)

View File

@ -1,222 +0,0 @@
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import dataclasses
from typing import Any, Dict, List, Optional, Tuple, Type, Union, cast
import torch
from vllm.config import VllmConfig
from vllm.distributed import get_pp_group
from vllm.forward_context import set_forward_context
from vllm.logger import init_logger
from vllm.model_executor.models.interfaces_base import VllmModelForPooling
from vllm.model_executor.pooling_metadata import PoolingMetadata
from vllm.multimodal import MultiModalKwargs
from vllm.pooling_params import PoolingParams
from vllm.sequence import (IntermediateTensors, PoolerOutput, SequenceData,
SequenceGroupMetadata)
from vllm.worker.model_runner import (GPUModelRunnerBase, ModelInputForGPU,
ModelInputForGPUBuilder)
logger = init_logger(__name__)
@dataclasses.dataclass(frozen=True)
class ModelInputForGPUWithPoolingMetadata(ModelInputForGPU):
"""
Used by the PoolingModelRunner.
"""
pooling_metadata: Optional["PoolingMetadata"] = None
class PoolingModelRunner(
GPUModelRunnerBase[ModelInputForGPUWithPoolingMetadata]):
_model_input_cls: Type[ModelInputForGPUWithPoolingMetadata] = (
ModelInputForGPUWithPoolingMetadata)
_builder_cls: Type[ModelInputForGPUBuilder] = ModelInputForGPUBuilder
def __init__(
self,
vllm_config: VllmConfig,
kv_cache_dtype: Optional[str] = "auto",
is_driver_worker: bool = False,
):
super().__init__(vllm_config=vllm_config,
kv_cache_dtype=kv_cache_dtype,
is_driver_worker=is_driver_worker)
@torch.inference_mode()
def execute_model(
self,
model_input: ModelInputForGPUWithPoolingMetadata,
kv_caches: List[torch.Tensor],
intermediate_tensors: Optional[IntermediateTensors] = None,
num_steps: int = 1,
) -> Optional[Union[List[PoolerOutput], IntermediateTensors]]:
if num_steps > 1:
raise ValueError(
"PoolingModelRunner does not support multi-step execution.")
if self.lora_config:
assert model_input.lora_requests is not None
assert model_input.lora_mapping is not None
self.set_active_loras(model_input.lora_requests,
model_input.lora_mapping)
# Currently cuda graph is only supported by the decode phase.
assert model_input.attn_metadata is not None
prefill_meta = model_input.attn_metadata.prefill_metadata
decode_meta = model_input.attn_metadata.decode_metadata
virtual_engine = model_input.virtual_engine
# Pooling models are (ab-)used also to integrate non text models that
# are not autoregressive (PrithviGeosaptialMAE).
# These model might not use attention and do not really have a prefill
# and decode phase. The model input is processed in one shot and both
# decode_metadata and prefill_metadata would be None for such models.
# See the PlaceholderAttentionMetadata class.
# TODO: Figure out if cuda_graph is of any use for these models and
# explore how to leverage it.
if (prefill_meta is None and decode_meta is not None
and decode_meta.use_cuda_graph):
if model_input.inputs_embeds is None:
assert model_input.input_tokens is not None
graph_batch_size = model_input.input_tokens.shape[0]
model_executable = (
self.graph_runners[model_input.virtual_engine][(
graph_batch_size, False)])
else:
graph_batch_size = model_input.inputs_embeds.shape[0]
model_executable = (
self.graph_runners[model_input.virtual_engine][(
graph_batch_size, True)])
else:
model_executable = self.model
multi_modal_kwargs = model_input.multi_modal_kwargs or {}
seqlen_agnostic_kwargs = {
"finished_requests_ids": model_input.finished_requests_ids,
"request_ids_to_seq_ids": model_input.request_ids_to_seq_ids,
} if self.has_inner_state else {}
if (self.observability_config is not None
and self.observability_config.collect_model_forward_time):
model_forward_start = torch.cuda.Event(enable_timing=True)
model_forward_end = torch.cuda.Event(enable_timing=True)
model_forward_start.record()
cross_enc_kwargs = {}
if model_input.token_types is not None:
cross_enc_kwargs["token_type_ids"] = model_input.token_types
with set_forward_context(model_input.attn_metadata, self.vllm_config,
virtual_engine):
hidden_or_intermediate_states = model_executable(
input_ids=model_input.input_tokens,
positions=model_input.input_positions,
intermediate_tensors=intermediate_tensors,
**MultiModalKwargs.as_kwargs(
multi_modal_kwargs,
device=self.device,
),
**cross_enc_kwargs,
**seqlen_agnostic_kwargs,
)
if (self.observability_config is not None
and self.observability_config.collect_model_forward_time):
model_forward_end.record()
# Only perform pooling in the last pipeline stage.
if not get_pp_group().is_last_rank:
if (self.is_driver_worker
and hidden_or_intermediate_states is not None
and isinstance(hidden_or_intermediate_states,
IntermediateTensors)
and self.observability_config is not None
and self.observability_config.collect_model_forward_time):
model_forward_end.synchronize()
model_forward_time = model_forward_start.elapsed_time(
model_forward_end)
orig_model_forward_time = 0.0
if intermediate_tensors is not None:
orig_model_forward_time = intermediate_tensors.tensors.get(
"model_forward_time", torch.tensor(0.0)).item()
hidden_or_intermediate_states.tensors["model_forward_time"] = (
torch.tensor(model_forward_time + orig_model_forward_time))
return hidden_or_intermediate_states
# Only perform pooling in the driver worker.
if not self.is_driver_worker:
return []
pooling_metadata = model_input.pooling_metadata
assert pooling_metadata is not None
pooling_metadata.build_pooling_cursor(
num_scheduled_tokens=pooling_metadata.prompt_lens,
device=hidden_or_intermediate_states.device)
return [
self.model.pooler(hidden_states=hidden_or_intermediate_states,
pooling_metadata=pooling_metadata)
]
def make_model_input_from_broadcasted_tensor_dict(
self,
tensor_dict: Dict[str,
Any]) -> ModelInputForGPUWithPoolingMetadata:
return ModelInputForGPUWithPoolingMetadata.from_broadcasted_tensor_dict(
tensor_dict,
attn_backend=self.attn_backend,
)
def prepare_model_input(
self,
seq_group_metadata_list: Optional[List[SequenceGroupMetadata]],
virtual_engine: int = 0,
finished_requests_ids: Optional[List[str]] = None
) -> ModelInputForGPUWithPoolingMetadata:
assert seq_group_metadata_list is not None
model_input = self._prepare_model_input_tensors(
seq_group_metadata_list, finished_requests_ids)
# Prepare PoolingMetadata.
assert model_input.seq_lens is not None
pooling_metadata = self._prepare_pooling(seq_group_metadata_list,
model_input.seq_lens)
return dataclasses.replace(model_input,
pooling_metadata=pooling_metadata)
def _prepare_pooling(
self,
seq_group_metadata_list: List[SequenceGroupMetadata],
prompt_lens: List[int],
) -> PoolingMetadata:
"""Prepare PoolingMetadata for the sequence group metadata list."""
seq_groups: List[Tuple[List[int], PoolingParams]] = []
for i, seq_group_metadata in enumerate(seq_group_metadata_list):
seq_ids = list(seq_group_metadata.seq_data.keys())
pooling_params = seq_group_metadata.pooling_params
assert pooling_params is not None
task = pooling_params.task
assert task is not None, "You did not set `task` in the API"
model = cast(VllmModelForPooling, self.model)
to_update = model.pooler.get_pooling_updates(task)
to_update.apply(pooling_params)
seq_groups.append((seq_ids, pooling_params))
seq_data: Dict[int, SequenceData] = {}
for seq_group_metadata in seq_group_metadata_list:
seq_data.update(seq_group_metadata.seq_data)
pooling_metadata = PoolingMetadata(
seq_groups=seq_groups,
seq_data=seq_data,
prompt_lens=prompt_lens,
)
return pooling_metadata

View File

@ -30,7 +30,6 @@ from vllm.utils import (GiB_bytes, MemorySnapshot, bind_kv_cache,
from vllm.worker.cache_engine import CacheEngine
from vllm.worker.enc_dec_model_runner import EncoderDecoderModelRunner
from vllm.worker.model_runner import GPUModelRunnerBase, ModelRunner
from vllm.worker.pooling_model_runner import PoolingModelRunner
from vllm.worker.worker_base import (LocalOrDistributedWorkerBase, WorkerBase,
WorkerInput)
@ -83,9 +82,7 @@ class Worker(LocalOrDistributedWorkerBase):
else {"return_hidden_states": True}
ModelRunnerClass: Type[GPUModelRunnerBase] = ModelRunner
if model_config.runner_type == "pooling":
ModelRunnerClass = PoolingModelRunner
elif self.model_config.is_encoder_decoder:
if self.model_config.is_encoder_decoder:
ModelRunnerClass = EncoderDecoderModelRunner
self.model_runner: GPUModelRunnerBase = ModelRunnerClass(
vllm_config=self.vllm_config,
@ -99,7 +96,6 @@ class Worker(LocalOrDistributedWorkerBase):
# Uninitialized cache engine. Will be initialized by
# initialize_cache.
self.cache_engine: List[CacheEngine]
# Initialize gpu_cache as pooling models don't initialize kv_caches
self.gpu_cache: Optional[List[List[torch.Tensor]]] = None
self._seq_group_metadata_cache: Dict[str, SequenceGroupMetadata] = {}