mirror of
https://github.com/vllm-project/vllm-ascend.git
synced 2025-10-20 13:43:53 +08:00
### What this PR does / why we need it? - Refacotr and integrate a unified `WeightPrefetchMethod` - Integrate `qkv_proj.weight` and `o_proj.weight` in quantized Attention modules - Prefetching these weights ahead of matmul-like operators imporves performance by reducing L2 cache transfer latency ### Does this PR introduce _any_ user-facing change? Add a new config in `--additional-config` for configuration: ```json { "weight_prefetch_config": { "enabled": false, "prefetch_ratio": { "attn": { "qkv": 1.0, "o": 1.0, }, }, }, } ``` This feature is enabled by default, and can be disabled through this configuration ### How was this patch tested? - vLLM version: v0.11.0 --------- Signed-off-by: yuzhup <15705211260@163.com> Signed-off-by: zhoux77899 <zhouxiang100@huawei.com> Co-authored-by: yuzhup <15705211260@163.com>
76 lines
2.4 KiB
Python
76 lines
2.4 KiB
Python
from dataclasses import dataclass, field
|
|
|
|
import torch
|
|
import torch_npu
|
|
|
|
from vllm_ascend.ascend_config import WeightPrefetchConfig
|
|
|
|
SUPPORTED_MODULES = ["attn", "mlp", "moe"]
|
|
|
|
|
|
@dataclass
|
|
class ModuleWeightPrefetchConfig:
|
|
module_name: str
|
|
enable: bool = False
|
|
prefetch_ratio: dict = field(default_factory=dict)
|
|
|
|
def __post_init__(self) -> None:
|
|
self.prefetch_ratio = {
|
|
prefix: ratio
|
|
for prefix, ratio in self.prefetch_ratio.items() if 0 <= ratio <= 1
|
|
}
|
|
|
|
assert self.module_name in SUPPORTED_MODULES, (
|
|
f"Invalid module name {self.module_name}, should be one of {SUPPORTED_MODULES}"
|
|
)
|
|
|
|
if self.module_name in SUPPORTED_MODULES:
|
|
self.enable = self.enable and any(self.prefetch_ratio.values()) > 0
|
|
|
|
|
|
class WeightPrefetchMethod:
|
|
"""
|
|
Unified weight prefetch method.
|
|
"""
|
|
|
|
def __init__(self, weight_prefetch_config: WeightPrefetchConfig) -> None:
|
|
self.attn = ModuleWeightPrefetchConfig(
|
|
module_name="attn",
|
|
enable=weight_prefetch_config.enabled,
|
|
prefetch_ratio=weight_prefetch_config.prefetch_ratio.get(
|
|
"attn", {}))
|
|
|
|
def maybe_prefetch_attn_weight_preprocess(
|
|
self, prefix: str, weight: torch.Tensor,
|
|
start_flag: torch.Tensor) -> None:
|
|
if not self.attn.enable:
|
|
return
|
|
|
|
weight_size = weight.data.element_size() * weight.data.numel(
|
|
) * self.attn.prefetch_ratio.get(prefix, 0)
|
|
|
|
torch.ops.vllm.prefetch_preprocess(weight=weight,
|
|
start_flag=start_flag,
|
|
max_weight_size=int(weight_size))
|
|
|
|
def maybe_prefetch_attn_weight_postprocess(
|
|
self, stop_flag: torch.Tensor) -> None:
|
|
if not self.attn.enable:
|
|
return
|
|
|
|
torch.ops.vllm.prefetch_postprocess(stop_flag)
|
|
|
|
|
|
def maybe_npu_prefetch(inputs: torch.Tensor,
|
|
dependency: torch.Tensor,
|
|
max_size: int = 0,
|
|
offset: int = 0,
|
|
*,
|
|
enabled: bool = True) -> None:
|
|
if not enabled:
|
|
return
|
|
input_size = inputs.element_size() * inputs.numel()
|
|
if max_size <= 0 or max_size > input_size:
|
|
max_size = input_size
|
|
torch_npu.npu_prefetch(inputs, dependency, max_size, offset)
|