Files
vllm-ascend/vllm_ascend/platform.py
realliujiaxu f69a83b7ba [Feat] Flash comm allgher ep (#3334)
Support flash comm v1(Sequence Parallelism) for Allgather EP.

- vLLM version: v0.11.0rc3
- vLLM main: https://github.com/vllm-project/vllm/commit/v0.11.0

---------

Signed-off-by: realliujiaxu <realliujiaxu@163.com>
Co-authored-by: zhaozx-cn <zhaozx2116@163.com>
2025-10-15 19:36:32 +08:00

422 lines
18 KiB
Python

#
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This file is a part of the vllm-ascend project.
#
import gc
import os
from datetime import timedelta
from typing import TYPE_CHECKING, Optional, Tuple
import torch
import vllm.envs as envs_vllm
from torch.distributed import ProcessGroup
from torch.distributed.distributed_c10d import PrefixStore
from vllm.logger import logger
from vllm.platforms import Platform, PlatformEnum
from vllm_ascend.ascend_config import (check_ascend_config, get_ascend_config,
init_ascend_config)
from vllm_ascend.torchair.utils import (check_torchair_cache_exist,
delete_torchair_cache_file)
from vllm_ascend.utils import (ASCEND_QUANTIZATION_METHOD, enable_sp, is_310p,
update_aclgraph_sizes)
if TYPE_CHECKING:
from vllm.config import ModelConfig, VllmConfig
from vllm.utils import FlexibleArgumentParser
else:
ModelConfig = None
VllmConfig = None
FlexibleArgumentParser = None
class NPUPlatform(Platform):
_enum = PlatformEnum.OOT
device_name: str = "npu"
device_type: str = "npu"
simple_compile_backend: str = "eager" # Disable torch.compile()
ray_device_key: str = "NPU"
device_control_env_var: str = "ASCEND_RT_VISIBLE_DEVICES"
dispatch_key: str = "PrivateUse1"
supported_quantization: list[str] = [ASCEND_QUANTIZATION_METHOD]
def is_sleep_mode_available(self) -> bool:
return True
@classmethod
def pre_register_and_update(cls,
parser: Optional[FlexibleArgumentParser] = None
) -> None:
# Adapt the global patch here.
from vllm_ascend.utils import adapt_patch
adapt_patch(is_global_patch=True)
# For online serving, "ascend" quantization method is not a choice natively,
# so we need to add "ascend" quantization method to quantization methods list
# and the user can enable quantization using "vllm serve --quantization ascend".
if parser is not None:
quant_action = parser._option_string_actions.get('--quantization')
if quant_action and hasattr(quant_action,
'choices') and quant_action.choices:
if ASCEND_QUANTIZATION_METHOD not in quant_action.choices:
quant_action.choices.append(ASCEND_QUANTIZATION_METHOD)
from vllm_ascend.quantization.quant_config import \
AscendQuantConfig # noqa: F401
@classmethod
def get_device_capability(cls, device_id: int = 0):
return None
@classmethod
def get_device_name(cls, device_id: int = 0) -> str:
return torch.npu.get_device_name(device_id)
@classmethod
def is_async_output_supported(cls, enforce_eager: Optional[bool]) -> bool:
return True
@classmethod
def inference_mode(cls):
return torch.inference_mode()
@classmethod
def set_device(cls, device: torch.device):
torch.npu.set_device(device)
@classmethod
def empty_cache(cls):
torch.npu.empty_cache()
@classmethod
def synchronize(cls):
torch.npu.synchronize()
@classmethod
def mem_get_info(cls) -> Tuple[int, int]:
return torch.npu.mem_get_info()
@classmethod
def clear_npu_memory(cls):
gc.collect()
torch.npu.empty_cache()
torch.npu.reset_peak_memory_stats()
@classmethod
def check_and_update_config(cls, vllm_config: VllmConfig) -> None:
if not envs_vllm.VLLM_USE_V1:
raise ValueError("vLLM Ascend does not support V0 engine.")
# initialize ascend config from vllm additional_config
ascend_config = init_ascend_config(vllm_config)
from vllm.config import CompilationLevel # noqa: E402
compilation_config = vllm_config.compilation_config
model_config = vllm_config.model_config
parallel_config = vllm_config.parallel_config
cache_config = vllm_config.cache_config
scheduler_config = vllm_config.scheduler_config
ascend_scheduler_config = ascend_config.ascend_scheduler_config
structured_outputs_config = vllm_config.structured_outputs_config
if (model_config is not None and not model_config.use_mla
and not scheduler_config.async_scheduling
and model_config.runner_type != "pooling"):
logger.info(
"Non-MLA LLMs forcibly disable the chunked prefill feature,"
"as the performance of operators supporting this feature "
"functionality is currently suboptimal.")
if not model_config.is_multimodal_model and \
structured_outputs_config.backend == "auto" and \
not getattr(scheduler_config, "scheduler_delay_factor", 0) > 0 and \
not scheduler_config.send_delta_data and \
scheduler_config.policy == "fcfs":
ascend_scheduler_config.enabled = True
chunked_prefill_enabled_in_ascend_scheduler = getattr(
ascend_scheduler_config, "enable_chunked_prefill", False)
if chunked_prefill_enabled_in_ascend_scheduler:
logger.warning(
"Chunked prefill feature is enabled in ascend_scheduler,"
"but note that the operator supporting this feature "
"would lead to performance degradation.")
# In this situation, max_num_batched_tokens would have been rewritten.
# So we must make sure max_num_batched_tokens is not smaller than max_model_len.
if (scheduler_config.max_num_batched_tokens
< scheduler_config.max_model_len
and not chunked_prefill_enabled_in_ascend_scheduler):
scheduler_config.max_num_batched_tokens = scheduler_config.max_model_len
kv_cache_dtype = vllm_config.additional_config.get(
"kv_cache_dtype", None)
if kv_cache_dtype is not None:
vllm_config.cache_config.cache_dtype = kv_cache_dtype
elif model_config and hasattr(model_config.hf_config, "index_topk"):
vllm_config.cache_config.cache_dtype = str(
model_config.dtype).replace("torch.", "")
if model_config is None:
logger.warning("Model config is missing. This may indicate "
"that we are running a test case")
enforce_eager = False
else:
enforce_eager = getattr(model_config, "enforce_eager", False)
check_ascend_config(vllm_config, enforce_eager)
from vllm.config.compilation import CUDAGraphMode
if enforce_eager:
logger.info("Compilation disabled, using eager mode by default")
compilation_config.level = CompilationLevel.NO_COMPILATION
compilation_config.cudagraph_num_of_warmups = 1
if compilation_config.level not in [
CompilationLevel.NO_COMPILATION, CompilationLevel.PIECEWISE
]:
logger.warning(
"NPU does not support %s compilation level. Setting CUDAGraphMode to NONE",
compilation_config.level)
compilation_config.cudagraph_mode = CUDAGraphMode.NONE
# set CUDAGraphMode to None when torchair is enabled, no mather what compilation_config.level is.
if ascend_config.torchair_graph_config.enabled:
logger.info(
"Torchair compilation enabled on NPU. Setting CUDAGraphMode to NONE"
)
compilation_config.cudagraph_mode = CUDAGraphMode.NONE
# Note: We delete the torchair cache folder here to prevent runtime issues caused by dimension
# mismatches or configuration inconsistencies when users reuse cached computation graphs. Though
# this will increase graph compilation duration, it significantly enhances robustness and decreases
# graph launching time during inference.
if check_torchair_cache_exist(
) and not ascend_config.torchair_graph_config.use_cached_kv_cache_bytes:
logger.warning(
"Torchair cache folder is deleted here to prevent runtime issues caused by dimension "
"mismatches or configuration inconsistencies when users reuse cached computation graphs. "
"In order to decrease torchair graph compilation time, users can enable both use_cached_graph "
"and use_cached_kv_cache_bytes in torchair_graph_config.")
delete_torchair_cache_file()
# set cudaprah sizes before extending `compilation_config.splitting_ops`
vllm_config._set_cudagraph_sizes()
# TODO delete graph size update here when compilation_config.pass_config.enable_sequence_parallelism
# is supported by vllm-ascend.
if vllm_config.parallel_config.tensor_parallel_size > 1 and not vllm_config.model_config.enforce_eager and \
enable_sp(vllm_config):
original_sizes = compilation_config.cudagraph_capture_sizes
sp_aclgraph_sizes = \
vllm_config.update_sizes_for_sequence_parallelism(original_sizes)
assert sp_aclgraph_sizes, (
f"cudagraph_capture_sizes {original_sizes} does not contain"
f"values that are multiples of tp_size "
f"{vllm_config.parallel_config.tensor_parallel_size}")
if len(sp_aclgraph_sizes) != len(original_sizes):
compilation_config.cudagraph_capture_sizes = sp_aclgraph_sizes
vllm_config.compilation_config.init_with_cudagraph_sizes(
sp_aclgraph_sizes)
# TODO: Full graph is fully supported later, and the default value will be set to full graph.
if compilation_config.cudagraph_mode == CUDAGraphMode.FULL_AND_PIECEWISE:
compilation_config.cudagraph_mode = CUDAGraphMode.PIECEWISE
if compilation_config.cudagraph_mode == CUDAGraphMode.NONE:
compilation_config.level = CompilationLevel.NO_COMPILATION
elif compilation_config.cudagraph_mode == CUDAGraphMode.PIECEWISE:
logger.info(
"PIECEWISE compilation enabled on NPU. use_inductor not supported - "
"using only ACL Graph mode")
assert compilation_config.level == CompilationLevel.PIECEWISE, \
"When enabling piecewise aclgraph, please make sure compilation_config.level == CompilationLevel.PIECEWISE and compilation_config.cudagraph_mode == CUDAGraphMode.PIECEWISE"
compilation_config.set_splitting_ops_for_v1()
compilation_config.use_inductor = False
compilation_config.splitting_ops.extend([
"vllm.unified_ascend_attention_with_output", "vllm.mla_forward"
])
update_aclgraph_sizes(vllm_config)
elif compilation_config.cudagraph_mode == CUDAGraphMode.FULL_DECODE_ONLY:
logger.info(
"FULL_DECODE_ONLY compilation enabled on NPU. use_inductor not supported - "
"using only ACL Graph mode")
compilation_config.use_inductor = False
warning_message = """\033[91m
**********************************************************************************
* WARNING: You have enabled the *full graph* feature.
* This is an early experimental stage and may involve various unknown issues.
* A known problem is that capturing too many batch sizes can lead to OOM
* (Out of Memory) errors or inference hangs. If you encounter such issues,
* consider reducing `gpu_memory_utilization` or manually specifying a smaller
* batch size for graph capture.
* For more details, please refer to:
* https://docs.vllm.ai/en/stable/configuration/conserving_memory.html#reduce-cuda-graphs
**********************************************************************************\033[0m
"""
logger.warning(warning_message)
else:
logger.info(
"%s cudagraph_mode is not support on NPU. falling back to NONE",
compilation_config.cudagraph_mode)
compilation_config.cudagraph_mode = CUDAGraphMode.NONE
compilation_config.level = CompilationLevel.NO_COMPILATION
if parallel_config and parallel_config.worker_cls == "auto":
# TODO: this is a tricky way to disable `use_sequence_parallel_moe` in vllm.
os.environ["VLLM_ALL2ALL_BACKEND"] = "flashinfer_all2allv"
if ascend_config.torchair_graph_config.enabled or ascend_config.enable_shared_expert_dp:
parallel_config.worker_cls = "vllm_ascend.torchair.torchair_worker.NPUTorchairWorker"
else:
parallel_config.worker_cls = "vllm_ascend.worker.worker_v1.NPUWorker"
if cache_config:
if cache_config.block_size is None:
cache_config.block_size = 128
if cache_config.enable_prefix_caching and cache_config.block_size != 128:
logger.warning(
"If prefix caching is enabled, block size must be set to 128."
)
cache_config.block_size = 128
# Activate custom ops for v1, except on 310P
if not is_310p():
compilation_config.custom_ops = ["all"]
# If ascend_scheduler_config is enabled,
# extents original scheduler_config to use AscendScheduler.
if ascend_config.ascend_scheduler_config.enabled:
from vllm_ascend.core.schedule_config import AscendSchedulerConfig
ascend_scheduler_config = AscendSchedulerConfig.initialize_from_config(
vllm_config.scheduler_config,
ascend_config.ascend_scheduler_config)
vllm_config.scheduler_config = ascend_scheduler_config
@classmethod
def get_attn_backend_cls(
cls,
selected_backend,
head_size,
dtype,
kv_cache_dtype,
block_size,
use_v1,
use_mla,
has_sink=False,
use_sparse=False,
):
if not use_v1:
raise ValueError("vLLM Ascend does not support V0 engine.")
ascend_config = get_ascend_config()
if use_mla and ascend_config.enable_shared_expert_dp:
if use_mla and not use_sparse:
return "vllm_ascend.torchair.torchair_mla.AscendMLATorchairBackend"
if use_mla and use_sparse:
return "vllm_ascend.torchair.torchair_sfa.AscendSFATorchairBackend"
use_torchair = ascend_config.torchair_graph_config.enabled
# choose attention backend based on use_mla and use_torchair
backend_map = {
(True, False, True):
"vllm_ascend.torchair.torchair_mla.AscendMLATorchairBackend",
(True, False, False):
"vllm_ascend.attention.mla_v1.AscendMLABackend",
(False, False, True):
"vllm_ascend.torchair.torchair_attention.AscendAttentionTorchairBackend",
(False, False, False):
"vllm_ascend.attention.attention_v1.AscendAttentionBackend",
(True, True, False):
"vllm_ascend.attention.sfa_v1.AscendSFABackend",
(True, True, True):
"vllm_ascend.torchair.torchair_sfa.AscendSFATorchairBackend",
}
return backend_map[(use_mla, use_sparse, use_torchair)]
@classmethod
def get_punica_wrapper(cls) -> str:
return "vllm_ascend.lora.punica_npu.PunicaWrapperNPU"
@classmethod
def get_current_memory_usage(cls,
device: Optional[torch.types.Device] = None
) -> float:
torch.npu.reset_peak_memory_stats(device)
return torch.npu.max_memory_allocated(device)
@classmethod
def get_device_communicator_cls(cls) -> str:
return "vllm_ascend.distributed.communicator.NPUCommunicator"
@classmethod
def is_pin_memory_available(cls):
return True
@classmethod
def supports_v1(cls, model_config: ModelConfig) -> bool:
"""Returns whether the current platform can support v1 for the supplied
model configuration.
"""
return True
@classmethod
def get_static_graph_wrapper_cls(cls) -> str:
"""
Get piecewise backend class for piecewise graph.
"""
return "vllm_ascend.compilation.acl_graph.ACLGraphWrapper" # noqa
@classmethod
def stateless_init_device_torch_dist_pg(
cls,
backend: str,
prefix_store: PrefixStore,
group_rank: int,
group_size: int,
timeout: timedelta,
) -> ProcessGroup:
from torch.distributed import is_hccl_available
from torch_npu._C._distributed_c10d import ProcessGroupHCCL
assert is_hccl_available()
pg: ProcessGroup = ProcessGroup(
prefix_store,
group_rank,
group_size,
)
backend_options = ProcessGroupHCCL.Options()
backend_options._timeout = timeout
backend_class = ProcessGroupHCCL(prefix_store, group_rank, group_size,
backend_options)
device = torch.device("npu")
# TODO(Yizhou): Like we mentioned above, _set_default_backend is not
# implemented in the 2.5.1 version of PyTorch. But we need to set it
# after the latest version is released.
# pg._set_default_backend(backend_type)
backend_class._set_sequence_number_for_group()
backend_type = ProcessGroup.BackendType.CUSTOM
pg._register_backend(device, backend_type, backend_class)
return pg
@classmethod
def support_hybrid_kv_cache(cls) -> bool:
return True
@classmethod
def support_static_graph_mode(cls) -> bool:
return True