Files
vllm-ascend/vllm_ascend/models/layers/mla.py
realliujiaxu f69a83b7ba [Feat] Flash comm allgher ep (#3334)
Support flash comm v1(Sequence Parallelism) for Allgather EP.

- vLLM version: v0.11.0rc3
- vLLM main: https://github.com/vllm-project/vllm/commit/v0.11.0

---------

Signed-off-by: realliujiaxu <realliujiaxu@163.com>
Co-authored-by: zhaozx-cn <zhaozx2116@163.com>
2025-10-15 19:36:32 +08:00

172 lines
6.2 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
# Copyright 2023 The vLLM team.
# Copyright 2023 DeepSeek-AI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import Optional
import torch
from torch import nn
from vllm.attention import Attention, AttentionMetadata
from vllm.config import CacheConfig, get_current_vllm_config
from vllm.forward_context import ForwardContext, get_forward_context
from vllm.model_executor.layers.mla import MultiHeadLatentAttention
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.utils import direct_register_custom_op
@dataclass
class AscendMLAModules:
q_a_proj: Optional[torch.nn.Module]
q_a_layernorm: Optional[torch.nn.Module]
q_proj: Optional[torch.nn.Module]
kv_a_proj_with_mqa: torch.nn.Module
kv_a_layernorm: torch.nn.Module
kv_b_proj: torch.nn.Module
o_proj: torch.nn.Module
rotary_emb: torch.nn.Module
indexer: Optional[torch.nn.Module]
is_sparse: bool
class AscendMultiHeadLatentAttention(MultiHeadLatentAttention):
def __init__(
self,
hidden_size: int,
enable_shared_expert_dp: bool,
debug_layer_idx: int,
first_k_dense_replace: int,
tp_size: int,
mla_modules: AscendMLAModules,
num_local_heads: int,
scaling: float,
layers: int,
kv_lora_rank: int,
qk_rope_head_dim: int,
q_lora_rank: Optional[int],
qk_nope_head_dim: int,
qk_head_dim: int,
v_head_dim: int,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
nn.Module.__init__(self)
self.hidden_size = hidden_size
self.enable_shared_expert_dp = enable_shared_expert_dp
self.debug_layer_idx = debug_layer_idx
self.first_k_dense_replace = first_k_dense_replace
self.tp_size = tp_size
self.num_local_heads = num_local_heads
self.layers = layers
self.kv_lora_rank = kv_lora_rank
self.qk_rope_head_dim = qk_rope_head_dim
self.q_lora_rank = q_lora_rank
self.qk_nope_head_dim = qk_nope_head_dim
self.qk_head_dim = qk_head_dim
self.v_head_dim = v_head_dim
self.prefix = prefix
self.mla_attn = Attention(
num_heads=self.num_local_heads,
head_size=self.kv_lora_rank + self.qk_rope_head_dim,
scale=scaling,
num_kv_heads=1,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attn",
use_mla=True,
# MLA Args
q_lora_rank=self.q_lora_rank,
kv_lora_rank=self.kv_lora_rank,
qk_nope_head_dim=self.qk_nope_head_dim,
qk_rope_head_dim=self.qk_rope_head_dim,
qk_head_dim=self.qk_head_dim,
v_head_dim=self.v_head_dim,
rotary_emb=mla_modules.rotary_emb,
q_a_proj=mla_modules.q_a_proj,
q_a_layernorm=mla_modules.q_a_layernorm,
q_proj=mla_modules.q_proj,
kv_a_proj_with_mqa=mla_modules.kv_a_proj_with_mqa,
kv_a_layernorm=mla_modules.kv_a_layernorm,
kv_b_proj=mla_modules.kv_b_proj,
o_proj=mla_modules.o_proj,
)
compilation_config = get_current_vllm_config().compilation_config
if prefix in compilation_config.static_forward_context:
raise ValueError(f"Duplicate layer name: {prefix}")
compilation_config.static_forward_context[prefix] = self
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
kv_cache: Optional[torch.Tensor] = None,
attn_metadata: Optional[AttentionMetadata] = None) -> torch.Tensor:
need_gather_q_kv = get_forward_context().sp_enabled
output_shape = hidden_states.shape
# FIXME: This does not seem right, should make sure the buffer is fixed
output = torch.empty(output_shape,
dtype=hidden_states.dtype,
device=hidden_states.device)
torch.ops.vllm.mla_forward(hidden_states, need_gather_q_kv, output,
self.prefix)
output = output.view(-1, output_shape[-1])
return output
def mla_forward(
hidden_states: torch.Tensor,
need_gather_q_kv: bool,
output: torch.Tensor,
layer_name: str,
) -> None:
forward_context: ForwardContext = get_forward_context()
self = forward_context.no_compile_layers[layer_name]
if forward_context.attn_metadata:
attn_metadata = forward_context.attn_metadata[self.mla_attn.layer_name]
else:
attn_metadata = forward_context.attn_metadata
kv_cache = self.mla_attn.kv_cache[forward_context.virtual_engine]
self.mla_attn.impl.forward(self.mla_attn.layer_name, hidden_states,
kv_cache, attn_metadata, need_gather_q_kv,
output)
return
def mla_forward_fake(
hidden_states: torch.Tensor,
need_gather_q_kv: bool,
output: torch.Tensor,
layer_name: str,
) -> None:
return
direct_register_custom_op(
op_name="mla_forward",
op_func=mla_forward,
mutates_args=["output"],
fake_impl=mla_forward_fake,
dispatch_key="PrivateUse1",
)