Files
vllm-ascend/vllm_ascend/models/qwen2_vl.py
wangxiyuan f12f76d7ba Drop 0.10.2 (#3284)
Drop v0.10.2 support, we support vLLM 0.11.0rc3 now.
- vLLM version: v0.11.0rc3
- vLLM main:
https://github.com/vllm-project/vllm/commit/releases/v0.11.0

Signed-off-by: wangxiyuan <wangxiyuan1007@gmail.com>
2025-10-09 10:28:38 +08:00

352 lines
14 KiB
Python

#
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
# Copyright 2023 The vLLM team.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Adapted from vllm/model_executor/models/qwen2_vl.py
# This file is a part of the vllm-ascend project.
from collections.abc import Iterable
from functools import partial
from typing import Callable, Optional, Set, Tuple, Type
import torch
import torch.nn as nn
import torch_npu
from einops import rearrange
from transformers.models.qwen2_vl.configuration_qwen2_vl import \
Qwen2VLVisionConfig
from vllm.config import VllmConfig
from vllm.distributed import utils as dist_utils
from vllm.model_executor.layers.activation import QuickGELU
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.models.qwen2_vl import (
Qwen2VisionAttention, Qwen2VisionBlock, Qwen2VisionPatchEmbed,
Qwen2VisionTransformer, Qwen2VLDummyInputsBuilder,
Qwen2VLForConditionalGeneration, Qwen2VLMultiModalProcessor,
Qwen2VLProcessingInfo)
from vllm.model_executor.models.utils import maybe_prefix
from vllm.multimodal import MULTIMODAL_REGISTRY
MIN_PAD_SIZE = 64 # min_size to pad weight
MAX_PAD_SIZE = 128 # max_size to pad weight
class AscendQwen2VisionAttention(Qwen2VisionAttention):
def __init__(
self,
embed_dim: int,
num_heads: int,
projection_size: int,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__(
embed_dim,
num_heads,
projection_size,
quant_config,
prefix,
)
self.cu_seqlens = None
self.hidden_size_per_attention_head = dist_utils.divide(
projection_size, num_heads)
self.origin_hidden_size_per_attention_head = self.hidden_size_per_attention_head
if self.hidden_size_per_attention_head > MIN_PAD_SIZE and self.hidden_size_per_attention_head < MAX_PAD_SIZE:
self.hidden_size_per_attention_head = MAX_PAD_SIZE
def forward(
self,
x: torch.Tensor,
cu_seqlens: torch.Tensor,
cos: torch.Tensor,
sin: torch.Tensor,
) -> torch.Tensor:
self.cu_seqlens = cu_seqlens
# [s, b, c] --> [s, b, 3 * head * head_dim]
x, _ = self.qkv(x)
# [s, b, 3 * head * head_dim] -> 3 * [s, b, head, head_dim]
q, k, v = self.split_qkv(x)
batch_size = q.shape[1]
q, k, v = [
rearrange(x, "s b ... -> b s ...").contiguous() for x in (q, k, v)
]
q = torch_npu.npu_rotary_mul(q, cos, sin)
k = torch_npu.npu_rotary_mul(k, cos, sin)
q, k, v = [
rearrange(x, "b s h d -> (b s) h d").contiguous()
for x in (q, k, v)
]
context_layer = torch.empty_like(q)
# operator requires pta version >= 2.5.1
torch_npu._npu_flash_attention_unpad(
query=q,
key=k,
value=v,
seq_len=self.cu_seqlens,
scale_value=self.origin_hidden_size_per_attention_head**-0.5,
num_heads=self.num_attention_heads_per_partition,
num_kv_heads=self.num_attention_heads_per_partition,
out=context_layer)
context_layer = rearrange(context_layer,
"(b s) h d -> s b (h d)",
b=batch_size).contiguous()
output, _ = self.proj(context_layer)
return output
class AscendQwen2VisionBlock(Qwen2VisionBlock):
def __init__(
self,
dim: int,
num_heads: int,
mlp_ratio: float,
act_layer: Type[nn.Module] = QuickGELU,
norm_layer: Optional[Callable[[int], nn.Module]] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__(dim, num_heads, mlp_ratio, act_layer, norm_layer,
quant_config, prefix)
self.attn = AscendQwen2VisionAttention(embed_dim=dim,
num_heads=num_heads,
projection_size=dim,
quant_config=quant_config,
prefix=f"{prefix}.attn")
def forward(
self,
x: torch.Tensor,
cu_seqlens: torch.Tensor,
cos: torch.Tensor,
sin: torch.Tensor,
) -> torch.Tensor:
x = x + self.attn(
self.norm1(x),
cu_seqlens=cu_seqlens,
cos=cos,
sin=sin,
)
x = x + self.mlp(self.norm2(x))
return x
class AscendQwen2VisionPatchEmbed(Qwen2VisionPatchEmbed):
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = x.matmul(
self.proj.weight.data.view(self.embed_dim, -1).transpose(0, 1))
return x
class AscendQwen2VisionTransformer(Qwen2VisionTransformer):
def __init__(
self,
vision_config: Qwen2VLVisionConfig,
norm_eps: float = 1e-6,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
interleaved=False,
) -> None:
super().__init__(vision_config, norm_eps, quant_config, prefix)
self.interleaved = interleaved
self.enable_pad = False
self.depth = vision_config.depth
self.hidden_size = vision_config.embed_dim
self.num_heads = vision_config.num_heads
self.patch_embed = AscendQwen2VisionPatchEmbed(
patch_size=vision_config.patch_size,
temporal_patch_size=vision_config.temporal_patch_size,
in_channels=vision_config.in_channels,
embed_dim=vision_config.embed_dim,
)
self.blocks = nn.ModuleList([
AscendQwen2VisionBlock(dim=self.embed_dim,
num_heads=self.num_heads,
mlp_ratio=vision_config.mlp_ratio,
norm_layer=partial(nn.LayerNorm,
eps=norm_eps),
quant_config=quant_config,
prefix=f"{prefix}.blocks.{layer_idx}")
for layer_idx in range(vision_config.depth)
])
self.hidden_size_per_attention_head = dist_utils.divide(
self.hidden_size, self.num_heads)
if self.hidden_size_per_attention_head > MIN_PAD_SIZE and self.hidden_size_per_attention_head < MAX_PAD_SIZE:
self.enable_pad = True
self.origin_hidden_size_per_attention_head = self.hidden_size_per_attention_head
self.half_origin_hidden_size_per_attention_head = self.hidden_size_per_attention_head // 2
self.half_pad_hidden_size_per_attention_head = (
MAX_PAD_SIZE - self.hidden_size_per_attention_head) // 2
self.hidden_size_per_attention_head = MAX_PAD_SIZE
def cal_cos_sin(self, rotary_pos_emb):
cos = rotary_pos_emb.cos() # [seqlen, rotary_dim / 2]
sin = rotary_pos_emb.sin()
if self.enable_pad:
cos = torch.nn.functional.pad(
cos, (0, self.half_pad_hidden_size_per_attention_head))
sin = torch.nn.functional.pad(
sin, (0, self.half_pad_hidden_size_per_attention_head))
if not self.interleaved:
cos_new = torch.cat((cos, cos), dim=-1)
sin_new = torch.cat((sin, sin), dim=-1)
else:
cos_new = rearrange(torch.stack((cos, cos), dim=-1),
"... d two -> ...(d two)",
two=2)
sin_new = rearrange(torch.stack((sin, sin), dim=-1),
"... d two -> ...(d two)",
two=2)
cos_new = cos_new.reshape(1, -1, 1,
self.hidden_size_per_attention_head)
sin_new = sin_new.reshape(1, -1, 1,
self.hidden_size_per_attention_head)
return cos_new, sin_new
def pad_qkv_bias(self, bias):
first_half = bias.reshape(
-1, 3, self.origin_hidden_size_per_attention_head
)[:, :, :self.half_origin_hidden_size_per_attention_head]
second_half = bias.reshape(
-1, 3, self.origin_hidden_size_per_attention_head
)[:, :, self.half_origin_hidden_size_per_attention_head:]
first_half_padded = torch.nn.functional.pad(
first_half, (0, self.half_pad_hidden_size_per_attention_head))
second_half_padded = torch.nn.functional.pad(
second_half, (0, self.half_pad_hidden_size_per_attention_head))
bias_padded = torch.cat([first_half_padded, second_half_padded], dim=2)
bias_final = bias_padded.reshape(-1)
return bias_final
def pad_qkv_weight(self, data):
qkv_weight_first_half = data.reshape(
-1, 3, self.origin_hidden_size_per_attention_head, self.hidden_size
)[:, :, :self.half_origin_hidden_size_per_attention_head, :]
qkv_weight_second_half = data.reshape(
-1, 3, self.origin_hidden_size_per_attention_head, self.hidden_size
)[:, :, self.half_origin_hidden_size_per_attention_head:, :]
qkv_weight_first_half_padded = torch.nn.functional.pad(
qkv_weight_first_half,
(0, 0, 0, self.half_pad_hidden_size_per_attention_head))
qkv_weight_second_half_padded = torch.nn.functional.pad(
qkv_weight_second_half,
(0, 0, 0, self.half_pad_hidden_size_per_attention_head))
qkv_weight_padded = torch.cat(
[qkv_weight_first_half_padded, qkv_weight_second_half_padded],
dim=2)
qkv_weight_final = qkv_weight_padded.reshape(-1, self.hidden_size)
return qkv_weight_final
def pad_proj_weight(self, data):
out_weight = torch.nn.functional.pad(
data.reshape(self.hidden_size, -1,
self.half_origin_hidden_size_per_attention_head),
(0, self.half_pad_hidden_size_per_attention_head, 0, 0)).reshape(
self.hidden_size, -1)
return out_weight
def load_weights(self, weights: Iterable[Tuple[str,
torch.Tensor]]) -> Set[str]:
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
]
params_dict = dict(self.named_parameters(remove_duplicate=False))
loaded_params: Set[str] = set()
for name, loaded_weight in weights:
for (param_name, weight_name, shard_id) in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
if ("attn.proj.weight" in name) and self.enable_pad:
param.data = self.pad_proj_weight(param.data)
if ("attn.qkv.weight" in name) and self.enable_pad:
param.data = self.pad_qkv_weight(param.data)
if ("attn.qkv.bias" in name) and self.enable_pad:
param.data = self.pad_qkv_bias(param.data)
loaded_params.add(name)
return loaded_params
def forward(
self,
x: torch.Tensor,
grid_thw: torch.Tensor,
) -> torch.Tensor:
# compute cu_seqlens and avoid cumsum to fit operator unpadFA
cu_seqlens = torch.repeat_interleave(grid_thw[:, 1] * grid_thw[:, 2],
grid_thw[:,
0]).cpu().to(torch.int32)
# patchify
x = x.to(device=self.device, dtype=self.dtype)
x = self.patch_embed(x)
# compute position embedding
rotary_pos_emb = self.rot_pos_emb(grid_thw)
cos, sin = self.cal_cos_sin(rotary_pos_emb)
x = x.unsqueeze(1)
for blk in self.blocks:
x = blk(x, cu_seqlens=cu_seqlens, cos=cos, sin=sin)
# adapter
x = self.merger(x)
return x
@MULTIMODAL_REGISTRY.register_processor(Qwen2VLMultiModalProcessor,
info=Qwen2VLProcessingInfo,
dummy_inputs=Qwen2VLDummyInputsBuilder)
class AscendQwen2VLForConditionalGeneration(Qwen2VLForConditionalGeneration):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__(vllm_config=vllm_config, prefix=prefix)
self.visual = AscendQwen2VisionTransformer(
self.config.vision_config,
norm_eps=getattr(self.config, "rms_norm_eps", 1e-6),
quant_config=vllm_config.quant_config,
prefix=maybe_prefix(prefix, "visual"),
)