Files
vllm-ascend/vllm_ascend/ascend_config.py
Mercykid-bash ecb1713dfc Bugfix: Expose the user policy type interface (#3336)
This PR primarily focuses on two key changes:
1. Adjusts internal interface calls to optimize the interaction logic
between related modules.
2. Exposes an interface that allows users to select the EPLB algorithm,
enabling more flexible configuration based on specific usage scenarios.

These changes aim to enhance the usability of the system while ensuring
the stability of internal operations. Relevant unit tests have been
updated to cover the modified logic.

- vLLM version: v0.11.0rc3
- vLLM main: https://github.com/vllm-project/vllm/commit/v0.11.0

---------

Signed-off-by: Che Ruan <cr623@ic.ac.uk>
Co-authored-by: Che Ruan <cr623@ic.ac.uk>
2025-10-11 16:28:57 +08:00

289 lines
13 KiB
Python

#
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
# This file is a part of the vllm-ascend project.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional
from vllm.logger import logger
TORCHAIR_MODEL_LIST = ["deepseek", "pangu", "kimi_k2", "qwen"]
def _check_torchair_supported(model_type: str):
for supported_model in TORCHAIR_MODEL_LIST:
if supported_model in model_type.lower():
return True
return False
class AscendConfig:
"""
Configuration Object for additional_config from vllm.configs.
"""
def __init__(self, vllm_config):
additional_config = vllm_config.additional_config if vllm_config.additional_config is not None else {}
self.is_deepseek_sfa = vllm_config.model_config is not None and vllm_config.model_config.is_deepseek_mla and vllm_config.model_config.hf_text_config.model_type == "deepseek_v32"
self.use_sfa = self.is_deepseek_sfa
torchair_graph_config = additional_config.get("torchair_graph_config",
{})
self.torchair_graph_config = TorchairGraphConfig(torchair_graph_config)
ascend_scheduler_config = additional_config.get(
"ascend_scheduler_config", {})
self.ascend_scheduler_config = AscendSchedulerConfig(
ascend_scheduler_config)
weight_prefetch_config = additional_config.get(
"weight_prefetch_config", {})
self.weight_prefetch_config = WeightPrefetchConfig(
weight_prefetch_config)
# Todo: Once https://github.com/vllm-project/vllm/issues/22246 is merged in vllm. Remove this config
self.expert_map_path = additional_config.get("expert_map_path", None)
self.eplb_policy_type = additional_config.get("eplb_policy_type", 1)
self.expert_map_record_path = additional_config.get(
"expert_map_record_path",
None) # Provide path to export expert map
self.init_redundancy_expert = additional_config.get(
"init_redundancy_expert", 0)
self.dynamic_eplb = additional_config.get("dynamic_eplb", False)
self.num_iterations_eplb_update = additional_config.get(
"num_iterations_eplb_update", 400)
self.gate_eplb = additional_config.get("gate_eplb", False)
self.num_wait_worker_iterations = additional_config.get(
"num_wait_worker_iterations", 30)
self.chunked_prefill_for_mla = additional_config.get(
"chunked_prefill_for_mla", False)
self.enable_shared_expert_dp = additional_config.get(
"enable_shared_expert_dp", False
) and not self.torchair_graph_config.enabled and vllm_config.parallel_config.enable_expert_parallel
self.multistream_overlap_shared_expert = additional_config.get(
"multistream_overlap_shared_expert", False)
self.lmhead_tensor_parallel_size = additional_config.get(
"lmhead_tensor_parallel_size", None)
if self.lmhead_tensor_parallel_size is not None:
logger.info(
f"Enable lmhead_tensor_parallel_size={self.lmhead_tensor_parallel_size} in pure DP scenario"
)
if vllm_config.parallel_config.tensor_parallel_size != 1:
raise AssertionError(
"lmhead_tensor_parallel_size is only supported in the pure DP scenario"
)
self.oproj_tensor_parallel_size = additional_config.get(
"oproj_tensor_parallel_size", None)
if self.oproj_tensor_parallel_size is not None:
logger.info(
f"Enable oproj_tensor_parallel_size={self.oproj_tensor_parallel_size} in pure DP scenario"
)
if vllm_config.parallel_config.tensor_parallel_size != 1:
raise AssertionError(
"oproj_tensor_parallel_size is only supported in the pure DP scenario"
)
if not self.torchair_graph_config.enabled:
raise AssertionError(
"oproj_tensor_parallel_size is only supported in graph mode"
)
if vllm_config.kv_transfer_config is None or not vllm_config.kv_transfer_config.is_kv_consumer:
raise AssertionError(
"oproj_tensor_parallel_size is only supported in pd scenario and can only be used in D node."
)
self.pd_tp_ratio = 1
self.pd_head_ratio = 1
self.num_head_replica = 0
if vllm_config.kv_transfer_config is not None and not vllm_config.model_config.is_deepseek_mla:
prefill_tp_size = vllm_config.kv_transfer_config.get_from_extra_config(
"prefill", {"tp_size": 1})["tp_size"]
decode_tp_size = vllm_config.kv_transfer_config.get_from_extra_config(
"decode", {"tp_size": 1})["tp_size"]
assert prefill_tp_size % decode_tp_size == 0, "Prefill TP size must be divisible by Decode TP size."
self.pd_tp_ratio = prefill_tp_size // decode_tp_size
if self.pd_tp_ratio > 1:
try:
# only support Qwen model now
# TODO: use a more robust method to get kv_head_num
num_kv_head = vllm_config.model_config.hf_config.num_key_value_heads
self.num_head_replica = prefill_tp_size // num_kv_head
prefill_tp_size = min(prefill_tp_size, num_kv_head)
decode_tp_size = min(decode_tp_size, num_kv_head)
self.pd_head_ratio = prefill_tp_size // decode_tp_size
except Exception:
raise AssertionError(
"Can not get num_key_value_heads from model_config")
if self.pd_tp_ratio == 0:
raise AssertionError(
"Only support P node tp size lagger then D node tp size")
class TorchairGraphConfig:
"""
Configuration Object for torchair_graph_config from additional_config
"""
def __init__(self, torchair_graph_config):
self.enabled = torchair_graph_config.get("enabled", False)
self.mode = torchair_graph_config.get("mode", '')
self.use_cached_graph = torchair_graph_config.get(
"use_cached_graph", False)
self.use_cached_kv_cache_bytes = torchair_graph_config.get(
"use_cached_kv_cache_bytes", False)
self.graph_batch_sizes = torchair_graph_config.get(
"graph_batch_sizes", [])
self.graph_batch_sizes_init = torchair_graph_config.get(
"graph_batch_sizes_init", False)
self.enable_multistream_mla = torchair_graph_config.get(
"enable_multistream_mla", False)
self.enable_view_optimize = torchair_graph_config.get(
"enable_view_optimize", True)
self.enable_frozen_parameter = torchair_graph_config.get(
"enable_frozen_parameter", True)
self.enable_kv_nz = torchair_graph_config.get("enable_kv_nz", False)
if not isinstance(self.graph_batch_sizes, list):
raise TypeError("graph_batch_sizes must be list[int]")
if self.graph_batch_sizes_init and len(self.graph_batch_sizes) > 0:
raise ValueError(
"graph_batch_sizes_init is only valid when graph_batch_sizes is empty"
)
if not self.enabled:
if self.mode:
raise RuntimeError(
"mode is valid only when Torchair graph mode is enabled")
if self.use_cached_graph:
raise RuntimeError(
"use_cached_graph is valid only when Torchair graph mode is enabled"
)
if self.use_cached_kv_cache_bytes:
raise RuntimeError(
"use_cached_kv_cache_bytes is valid only when Torchair graph mode is enabled"
)
if self.graph_batch_sizes:
raise RuntimeError(
"graph_batch_sizes is valid only when Torchair graph mode is enabled"
)
if self.graph_batch_sizes_init:
raise RuntimeError(
"graph_batch_sizes_init is valid only when Torchair graph mode is enabled"
)
if self.enable_multistream_mla:
raise RuntimeError(
"enable_multistream_mla is valid only when Torchair graph mode is enabled"
)
if self.enable_kv_nz:
raise RuntimeError(
"enable_kv_nz is valid only when Torchair graph mode is enabled"
)
if self.use_cached_kv_cache_bytes and not self.use_cached_graph:
raise RuntimeError(
"use_cached_kv_cache_bytes is valid only when Torchair graph mode and use_cached_graph are enabled"
)
class AscendSchedulerConfig:
"""
Configuration Object for ascend_scheduler_config from additional_config
"""
def __init__(self, ascend_scheduler_config: dict):
self.enabled = ascend_scheduler_config.get("enabled", False)
# Ascend scheduler is based on vllm v0 scheduler, so we should support
# all vllm v0 scheduler configs as well.
for k, v in ascend_scheduler_config.items():
if not hasattr(self, k):
setattr(self, k, v)
class WeightPrefetchConfig:
"""
Configuration Object for weight_prefetch_config from additional_config
"""
prefetch_ratio: dict = {
"attn": {
"qkv": 1.0,
"o": 1.0,
},
}
def __init__(self, weight_prefetch_config: dict):
self.enabled = weight_prefetch_config.get("enabled", False)
self.prefetch_ratio = weight_prefetch_config.get(
"prefetch_ratio", self.prefetch_ratio)
_ASCEND_CONFIG: Optional[AscendConfig] = None
def init_ascend_config(vllm_config):
additional_config = vllm_config.additional_config if vllm_config.additional_config is not None else {}
refresh = additional_config.get("refresh",
False) if additional_config else False
global _ASCEND_CONFIG
if _ASCEND_CONFIG is not None and not refresh:
return _ASCEND_CONFIG
_ASCEND_CONFIG = AscendConfig(vllm_config)
return _ASCEND_CONFIG
def clear_ascend_config():
global _ASCEND_CONFIG
_ASCEND_CONFIG = None
def get_ascend_config():
global _ASCEND_CONFIG
if _ASCEND_CONFIG is None:
raise RuntimeError(
"Ascend config is not initialized. Please call init_ascend_config first."
)
return _ASCEND_CONFIG
def check_ascend_config(vllm_config, enforce_eager):
ascend_config = get_ascend_config()
# for eager mode
if enforce_eager:
# torchair_graph cannot be enabled with eager mode.
if ascend_config.torchair_graph_config.enabled:
raise RuntimeError(
"Can't enable graph mode and eager mode at the same time. Please set `enforce_eager=False` if you attempt to enable NPU graph mode."
)
# for graph mode
else:
# torchair_graph case
if ascend_config.torchair_graph_config.enabled:
# torchair_graph is supported for deepseek/pangu/qwen model only.
if vllm_config.model_config:
model_type = vllm_config.model_config.hf_config.model_type
if not _check_torchair_supported(model_type):
raise NotImplementedError(
"Torchair graph mode only works with following model types:"
f"{TORCHAIR_MODEL_LIST}.")
if ascend_config.enable_shared_expert_dp:
logger.warning(
"enable_shared_expert_dp is not supported for torchair graph mode currently, "
"it has been disabled automatically.")
# aclgraph case
else:
if vllm_config.model_config:
model_type = vllm_config.model_config.hf_config.model_type
if "qwen" not in model_type:
logger.warning(
"ACL Graph is currently experimental. Please "
"raise an issue on https://github.com/vllm-project/vllm-ascend/issues"
" if you encourage any Error")