Files
vllm-ascend/examples/offline_external_launcher.py
huangxialu e8c871ed0a [Test] enable external launcher and add e2e test for sleep mode in level2 (#3344)
### What this PR does / why we need it?
1. Enable tests/e2e/multicard/test_external_launcher.py
2. Add e2e test for  sleep mode in level2

### Does this PR introduce _any_ user-facing change?
not involved

### How was this patch tested?
CI passed with existing test.

- vLLM version: v0.11.0rc3
- vLLM main: https://github.com/vllm-project/vllm/commit/v0.11.0

Signed-off-by: huangxialu <huangxialu1@huawei.com>
Co-authored-by: Shangwei-Li <lishangwei2@huawei.com>
2025-10-11 17:29:38 +08:00

331 lines
12 KiB
Python

#
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
# Copyright 2023 The vLLM team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This file is a part of the vllm-ascend project.
# Adapted from vllm-project/vllm/examples/offline_inference/data_parallel.py
# Note: This script is designed to run with e2e test,
# please be careful to modify it.
"""
Usage:
Single node:
Dense models:
python examples/offline_external_launcher.py \
--model="Qwen/Qwen2.5-0.5B-Instruct" \
--tp-size=1 \
--proc-per-node=2
MOE models:
python examples/offline_external_launcher.py \
--model="Qwen/Qwen3-30B-A3B" \
--tp-size=2 \
--proc-per-node=2 \
--enable-expert-parallel
Multi-node:
Node 0 (assume the node has ip of 10.99.48.128):
python examples/offline_external_launcher.py \
--model="Qwen/Qwen3-30B-A3B" \
--tp-size=2 \
--node-size=2 \
--node-rank=0 \
--proc-per-node=2 \
--enable-expert-parallel \
--master-addr=10.99.48.128 \
--master-port=13345
Node 1:
python examples/offline_external_launcher.py \
--model="Qwen/Qwen3-30B-A3B" \
--tp-size=2 \
--node-size=2 \
--node-rank=1 \
--enable-expert-parallel \
--master-addr=10.99.48.128 \
--master-port=13345
"""
import argparse
import contextlib
import gc
import os
from multiprocessing import Process
from time import sleep
import torch
from vllm import LLM, SamplingParams
from vllm.distributed.parallel_state import ( # noqa E402
destroy_distributed_environment, destroy_model_parallel, get_tp_group)
from vllm.utils import get_open_port, GiB_bytes
from safetensors.torch import load_file
os.environ["VLLM_USE_MODELSCOPE"] = "True"
os.environ["VLLM_WORKER_MULTIPROC_METHOD"] = "spawn"
def patch_vllm_moe_model_weight_loader(model):
model = getattr(model, "model", None) or getattr(model, "language_model", None)
if model is None:
raise ValueError("The provided model does not have a valid 'model' or 'language_model' attribute.")
for layer in model.layers:
mlp_attr = "mlp"
mlp = getattr(layer, mlp_attr)
param_dict = dict(mlp.named_parameters())
for name, param in param_dict.items():
if "w13_weight" in name or "w2_weight" in name:
param.weight_loader = mlp.experts.weight_loader
def load_and_merge_safetensors(directory):
if not os.path.isdir(directory):
raise ValueError(f"The provided directory does not exist: {directory}")
merged_dict = {}
for filename in os.listdir(directory):
if filename.endswith(".safetensors"):
file_path = os.path.join(directory, filename)
print(f"loading file: {file_path}")
f = load_file(file_path)
merged_dict.update(f)
return merged_dict
def parse_args():
parser = argparse.ArgumentParser(description="External launcher Inference")
parser.add_argument(
"--model",
type=str,
default="Qwen/Qwen3-0.6B",
help="Model name or path",
)
parser.add_argument("--tp-size",
type=int,
default=1,
help="Tensor parallel size")
parser.add_argument("--node-size",
type=int,
default=1,
help="Total number of nodes")
parser.add_argument("--node-rank",
type=int,
default=0,
help="Rank of the current node")
parser.add_argument("--proc-per-node",
type=int,
default=1,
help="Number of processes per node")
parser.add_argument("--master-addr",
type=str,
default="",
help="Master node IP address")
parser.add_argument("--master-port",
type=int,
default=0,
help="Master node port")
parser.add_argument("--enforce-eager",
action="store_true",
help="Enforce eager mode execution.")
parser.add_argument("--trust-remote-code",
action="store_true",
help="Trust remote code.")
parser.add_argument("--enable-expert-parallel",
action="store_true",
help="Enable expert parallel, used in MOE models.")
parser.add_argument("--enable-sleep-mode",
action="store_true",
help="Enable sleep mode for the engine.")
parser.add_argument("--temperature",
type=float,
default=0.8,
help="Float that controls the randomness of the sampling.")
parser.add_argument("--model-weight-gib",
type=float,
default=None,
help="Model weight memory usage in GiB (e.g., 1.0 for 0.5B model).")
parser.add_argument("--sleep-mode-level",
type=int,
choices=[1, 2],
default=1,
help="Sleep mode level: 1 or 2. This example of level 2 is only supported for dense model.")
args = parser.parse_args()
if args.enable_sleep_mode:
if args.model_weight_gib is None or args.temperature != 0:
parser.error("model-weight-gib must be provided, and temperature must be zero when enable-sleep-mode is set.")
if args.model_weight_gib <= 0:
parser.error("model-weight-gib must be greater than 0 when enable-sleep-mode is set.")
if args.model == parser.get_default("model") and args.model_weight_gib is None:
parser.error("model-weight-gib must be provided for default model when enable-sleep-mode is set.")
return args
def main(
local_rank: int,
rank: int,
master_addr: str,
master_port: int,
model_weight_gib: float,
model: str = "Qwen/Qwen3-0.6B",
world_size: int = 4,
tensor_parallel_size: int = 2,
enable_expert_parallel: bool = False,
enforce_eager: bool = False,
trust_remote_code: bool = True,
enable_sleep_mode: bool = False,
temperature: float = 0.8,
sleep_mode_level: int = 1,
):
os.environ["MASTER_ADDR"] = master_addr
os.environ["MASTER_PORT"] = str(master_port)
os.environ["RANK"] = str(rank)
os.environ["LOCAL_RANK"] = str(local_rank)
os.environ["WORLD_SIZE"] = str(world_size)
if not torch.distributed.is_initialized():
torch.distributed.init_process_group(
backend="cpu:gloo,npu:hccl",
world_size=world_size,
rank=rank,
)
prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
] * 10
sampling_params = SamplingParams(
temperature=temperature,
top_p=0.95,
max_tokens=10,
)
llm = LLM(
model=model,
tensor_parallel_size=tensor_parallel_size,
enable_expert_parallel=enable_expert_parallel,
enforce_eager=enforce_eager,
trust_remote_code=trust_remote_code,
distributed_executor_backend="external_launcher",
seed=0,
enable_sleep_mode=enable_sleep_mode,
)
tp_ranks = get_tp_group().ranks
print(f'TP RANKS: {tp_ranks}')
outputs = llm.generate(prompts, sampling_params)
if enable_sleep_mode:
if rank == 0:
free_bytes_before_sleep, total = torch.npu.mem_get_info()
llm.sleep(level=sleep_mode_level)
if rank == 0:
free_bytes_after_sleep, total = torch.npu.mem_get_info()
freed_bytes = free_bytes_after_sleep - free_bytes_before_sleep
print(f"Freed memory: {freed_bytes / 1024 ** 3:.2f} GiB")
# now the freed memory should be larger than the model weights
assert freed_bytes >= model_weight_gib / tensor_parallel_size * GiB_bytes
if sleep_mode_level == 1:
llm.wake_up()
else:
llm.wake_up(tags=["weights"])
run_model = llm.llm_engine.model_executor.driver_worker.worker.model_runner.model
patch_vllm_moe_model_weight_loader(run_model)
sd = load_and_merge_safetensors(model)
run_model.load_weights(sd.items())
llm.wake_up(tags=["kv_cache"])
outputs_after_wakeup = llm.generate(prompts, sampling_params)
if rank == 0:
# cmp output
assert outputs[0].outputs[0].text == outputs_after_wakeup[0].outputs[0].text
print("Sleep and wake up successfully!!")
for i, output in enumerate(outputs):
if i >= 5:
# print only 5 outputs
break
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Global rank: {rank}, Prompt: {prompt!r}, "
f"Generated text: {generated_text!r}")
# Give engines time to pause their processing loops before exiting.
sleep(5)
del llm
cleanup_env_and_memory()
def cleanup_env_and_memory():
destroy_model_parallel()
destroy_distributed_environment()
with contextlib.suppress(AssertionError):
torch.distributed.destroy_process_group()
gc.collect()
torch.npu.empty_cache()
torch.npu.reset_peak_memory_stats()
if __name__ == "__main__":
args = parse_args()
tp_size = args.tp_size
node_size = args.node_size
proc_per_node = args.proc_per_node
node_rank = args.node_rank
if node_size == 1:
master_addr = "127.0.0.1"
master_port = get_open_port()
else:
master_addr = args.master_addr
master_port = args.master_port
world_size = node_size * proc_per_node
procs = []
for local_rank, rank in enumerate(
range(proc_per_node * node_rank, proc_per_node * (node_rank + 1))):
proc = Process(target=main,
args=(
local_rank,
rank,
master_addr,
master_port,
args.model_weight_gib,
args.model,
world_size,
tp_size,
args.enable_expert_parallel,
args.enforce_eager,
args.trust_remote_code,
args.enable_sleep_mode,
args.temperature,
args.sleep_mode_level,
))
proc.start()
procs.append(proc)
exit_code = 0
for proc in procs:
proc.join(timeout=600)
if proc.exitcode is None:
print(
f"Killing process {proc.pid} that didn't stop within 30 minutes."
)
proc.kill()
exit_code = 1
elif proc.exitcode:
exit_code = proc.exitcode
exit(exit_code)