mirror of
https://github.com/vllm-project/vllm-ascend.git
synced 2025-10-21 06:10:33 +08:00
### What this PR does / why we need it? This is a post patch of #1014, for some convenience optimization - Set cached dataset path for speed - Use pypi to install escli-tool - Add benchmark results convert script to have a developer-friendly result - Patch the `benchmark_dataset.py` to disable streaming load for internet - Add more trigger ways for different purpose, `pr` for debug, `schedule` for daily test, `dispatch` and `pr-labled` for manual testing of a single(current) commit - Disable latency test for `qwen-2.5-vl`, (This script does not support multi-modal yet) ### Does this PR introduce _any_ user-facing change? No ### How was this patch tested? CI passed --------- Signed-off-by: wangli <wangli858794774@gmail.com>
184 lines
6.5 KiB
Python
184 lines
6.5 KiB
Python
import argparse
|
|
import json
|
|
import os
|
|
from pathlib import Path
|
|
|
|
import pandas as pd
|
|
from tabulate import tabulate
|
|
|
|
CUR_PATH = Path(__file__).parent.resolve()
|
|
# latency results and the keys that will be printed into markdown
|
|
latency_results = []
|
|
latency_column_mapping = {
|
|
"test_name": "Test name",
|
|
"avg_latency": "Mean latency (ms)",
|
|
"P50": "Median latency (ms)",
|
|
"P99": "P99 latency (ms)",
|
|
}
|
|
|
|
# throughput tests and the keys that will be printed into markdown
|
|
throughput_results = []
|
|
throughput_results_column_mapping = {
|
|
"test_name": "Test name",
|
|
"num_requests": "Num of reqs",
|
|
"total_num_tokens": "Total num of tokens",
|
|
"elapsed_time": "Elapsed time (s)",
|
|
"requests_per_second": "Tput (req/s)",
|
|
"tokens_per_second": "Tput (tok/s)",
|
|
}
|
|
|
|
# serving results and the keys that will be printed into markdown
|
|
serving_results = []
|
|
serving_column_mapping = {
|
|
"test_name": "Test name",
|
|
"request_rate": "Request rate (req/s)",
|
|
"request_throughput": "Tput (req/s)",
|
|
"output_throughput": "Output Tput (tok/s)",
|
|
"median_ttft_ms": "TTFT (ms)",
|
|
"median_tpot_ms": "TPOT (ms)",
|
|
"median_itl_ms": "ITL (ms)",
|
|
}
|
|
|
|
|
|
def read_markdown(file):
|
|
if os.path.exists(file):
|
|
with open(file) as f:
|
|
return f.read() + "\n"
|
|
else:
|
|
return f"{file} not found.\n"
|
|
|
|
|
|
def results_to_json(latency, throughput, serving):
|
|
return json.dumps({
|
|
'latency': latency.to_dict(),
|
|
'throughput': throughput.to_dict(),
|
|
'serving': serving.to_dict()
|
|
})
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(
|
|
description="Process the results of the benchmark tests.")
|
|
parser.add_argument(
|
|
"--results_folder",
|
|
type=str,
|
|
default="../results/",
|
|
help="The folder where the benchmark results are stored.")
|
|
parser.add_argument(
|
|
"--output_folder",
|
|
type=str,
|
|
default="../results/",
|
|
help="The folder where the benchmark results are stored.")
|
|
parser.add_argument("--markdown_template",
|
|
type=str,
|
|
default="./perf_result_template.md",
|
|
help="The template file for the markdown report.")
|
|
parser.add_argument("--tag",
|
|
default="main",
|
|
help="Tag to be used for release message.")
|
|
parser.add_argument("--commit_id",
|
|
default="",
|
|
help="Commit ID to be used for release message.")
|
|
|
|
args = parser.parse_args()
|
|
results_folder = (CUR_PATH / args.results_folder).resolve()
|
|
output_folder = (CUR_PATH / args.output_folder).resolve()
|
|
markdown_template = (CUR_PATH / args.markdown_template).resolve()
|
|
|
|
# collect results
|
|
for test_file in results_folder.glob("*.json"):
|
|
|
|
with open(test_file) as f:
|
|
raw_result = json.loads(f.read())
|
|
|
|
if "serving" in str(test_file):
|
|
# this result is generated via `benchmark_serving.py`
|
|
|
|
# update the test name of this result
|
|
raw_result.update({"test_name": test_file.stem})
|
|
|
|
# add the result to raw_result
|
|
serving_results.append(raw_result)
|
|
continue
|
|
|
|
elif "latency" in f.name:
|
|
# this result is generated via `benchmark_latency.py`
|
|
|
|
# update the test name of this result
|
|
raw_result.update({"test_name": test_file.stem})
|
|
|
|
# get different percentiles
|
|
for perc in [10, 25, 50, 75, 90, 99]:
|
|
# Multiply 1000 to convert the time unit from s to ms
|
|
raw_result.update(
|
|
{f"P{perc}": 1000 * raw_result["percentiles"][str(perc)]})
|
|
raw_result["avg_latency"] = raw_result["avg_latency"] * 1000
|
|
|
|
# add the result to raw_result
|
|
latency_results.append(raw_result)
|
|
continue
|
|
|
|
elif "throughput" in f.name:
|
|
# this result is generated via `benchmark_throughput.py`
|
|
|
|
# update the test name of this result
|
|
raw_result.update({"test_name": test_file.stem})
|
|
|
|
# add the result to raw_result
|
|
throughput_results.append(raw_result)
|
|
continue
|
|
|
|
print(f"Skipping {test_file}")
|
|
serving_results.sort(key=lambda x: (len(x['test_name']), x['test_name']))
|
|
|
|
latency_results = pd.DataFrame.from_dict(latency_results)
|
|
serving_results = pd.DataFrame.from_dict(serving_results)
|
|
throughput_results = pd.DataFrame.from_dict(throughput_results)
|
|
|
|
raw_results_json = results_to_json(latency_results, throughput_results,
|
|
serving_results)
|
|
|
|
# remapping the key, for visualization purpose
|
|
if not latency_results.empty:
|
|
latency_results = latency_results[list(
|
|
latency_column_mapping.keys())].rename(
|
|
columns=latency_column_mapping)
|
|
if not serving_results.empty:
|
|
serving_results = serving_results[list(
|
|
serving_column_mapping.keys())].rename(
|
|
columns=serving_column_mapping)
|
|
if not throughput_results.empty:
|
|
throughput_results = throughput_results[list(
|
|
throughput_results_column_mapping.keys())].rename(
|
|
columns=throughput_results_column_mapping)
|
|
|
|
processed_results_json = results_to_json(latency_results,
|
|
throughput_results,
|
|
serving_results)
|
|
|
|
# get markdown tables
|
|
latency_md_table = tabulate(latency_results,
|
|
headers='keys',
|
|
tablefmt='pipe',
|
|
showindex=False)
|
|
serving_md_table = tabulate(serving_results,
|
|
headers='keys',
|
|
tablefmt='pipe',
|
|
showindex=False)
|
|
throughput_md_table = tabulate(throughput_results,
|
|
headers='keys',
|
|
tablefmt='pipe',
|
|
showindex=False)
|
|
|
|
# document the result
|
|
print(output_folder)
|
|
with open(output_folder / "benchmark_results.md", "w") as f:
|
|
|
|
results = read_markdown(markdown_template)
|
|
results = results.format(
|
|
latency_tests_markdown_table=latency_md_table,
|
|
throughput_tests_markdown_table=throughput_md_table,
|
|
serving_tests_markdown_table=serving_md_table,
|
|
benchmarking_results_in_json_string=processed_results_json)
|
|
f.write(results)
|