Files
vllm-ascend/vllm_ascend/utils.py
Jiawei Li e57cca971c Fix the bugs about operator registration by PyTorch Dispatcher (#2786)
**Background:**

There are two principles about operator registration in PyTorch
- The same namespace can be only registered once by `TORCH_LIBRARY`
- The operator signatures can be only registered once by `def`

Considering that all custom operators defined in the current repo are
only used by Ascend, instead of defining a common operator schema by
vLLM, all accelerators then follow this operator schema and complete the
implementation based on their respective hardware, which is conducive to
functional abstraction.

Therefore, we can rename the operator registration namespace to an
Ascend-specific namespace(**_C_ascend**).

Related ISSUE: https://github.com/vllm-project/vllm-ascend/issues/2742


- vLLM version: main
- vLLM main:
f592b3174b

Signed-off-by: FFFrog <ljw1101.vip@gmail.com>
2025-09-13 11:58:52 +08:00

620 lines
23 KiB
Python

#
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
# Copyright 2023 The vLLM team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This file is a part of the vllm-ascend project.
# Adapted from vllm-project/vllm/vllm/worker/worker.py
#
import atexit
import functools
import math
import os
from contextlib import contextmanager
from enum import Enum
from threading import Lock
from typing import TYPE_CHECKING, Any, List, Optional, Tuple, Union
import torch
import torch_npu # noqa: F401 # noqa: F401
from packaging.version import InvalidVersion, Version
from torch_npu.npu.streams import Event
from vllm.logger import logger
import vllm_ascend.envs as envs_ascend
from vllm_ascend.ascend_config import get_ascend_config
if TYPE_CHECKING:
from vllm.config import VllmConfig
else:
VllmConfig = None
# NOTE: Currently, we can only capture 1800 graphs at most,
# due to the limitation of ACL graph. This number is bounded by
# the number of streams, which is 2048, we save 248 streams
# as a buffer.
# Maximum number of graphs that can be captured by ACL Graph
# TODO: Find out whether we need to solve allreduce function
MAX_CAPTURE_SIZE = 1800
ASCEND_QUANTIZATION_METHOD = "ascend"
SOC_VERSION_INFERENCE_SERIES = ["Ascend310P3"]
REGISTERED_ASCEND_OPS = {}
ACL_FORMAT_FRACTAL_ND = 2
ACL_FORMAT_FRACTAL_NZ = 29
_CUSTOM_OP_ENABLED = None
_IS_310P = None
_SLEEP_MODE_ENABLED = None
_CURRENT_STREAM = None
_ASCEND_CUSTOMOP_IS_REIGISTERED = False
def is_310p():
global _IS_310P
if _IS_310P is None:
from vllm_ascend import _build_info # type: ignore
_IS_310P = _build_info.__soc_version__.lower().startswith("ascend310p")
return _IS_310P
def sleep_mode_enabled():
global _SLEEP_MODE_ENABLED
if _SLEEP_MODE_ENABLED is None:
from vllm_ascend import _build_info # type: ignore
_SLEEP_MODE_ENABLED = _build_info.__sleep_mode_enabled__
return _SLEEP_MODE_ENABLED
def _round_up(x: int, align: int):
# round up x to align, for example, if align is 16, x will be rounded up to 16, 32, 48, etc.
# input: 15, 16 -> output: 16
# input: 17, 16 -> output: 32
# input: 30, 16 -> output: 32
# input: 33, 16 -> output: 48
# ...
return (x + align - 1) // align * align
def _custom_pad(x, pad_dims):
# pad the input tensor to the shape of pad_dims
# input: (13, 30), pad_dims: [0, 2, 0, 3]
# output: (16, 32)
return torch.nn.functional.pad(x, pad_dims)
def _custom_reshape(x, target_shape):
# reshape the input tensor to the shape of target_shape
# input: (16, 32), target_shape: [1, 16, 2, 16]
# output: (1, 16, 2, 16)
return x.reshape(target_shape)
def _custom_transpose(x, dim1, dim2):
# transpose the input tensor
# input: (1, 16, 2, 16), dim1: 1, dim2: 2
# output: (1, 2, 16, 16)
return x.transpose(dim1, dim2)
def nd_to_nz_2d(in_tensor: torch.Tensor) -> torch.Tensor:
# in_tensor: (13, 30)
aux_dims = [1, 0, 0, 16]
# aux_dims[1]: 16
aux_dims[1] = _round_up(in_tensor.size(0), 16)
# aux_dims[2]: 2
aux_dims[2] = _round_up(in_tensor.size(1), 16) // 16
# after: aux_dims: [1, 16, 2, 16]
pad_dims = [0, 0, 0, 0]
# pad_dims[1]: 2
pad_dims[1] = _round_up(in_tensor.size(1), 16) - in_tensor.size(1)
# pad_dims[3]: 3
pad_dims[3] = _round_up(in_tensor.size(0), 16) - in_tensor.size(0)
# after: pad_dims: [0, 2, 0, 3]
# return: (1, 2, 16, 16)
return _custom_transpose(
_custom_reshape(_custom_pad(in_tensor, pad_dims), aux_dims), 1,
2).contiguous()
def nd_to_nz_spec(mask_tensor: torch.Tensor) -> torch.Tensor:
num_tokens = mask_tensor.shape[0]
max_seq_len = mask_tensor.shape[1]
tokens_pad = (num_tokens + 15) // 16 * 16
max_seq_len_pad = (max_seq_len + 15) // 16 * 16
mask_tensor_pad = \
torch.zeros((1, tokens_pad, max_seq_len_pad), dtype=mask_tensor.dtype, device=mask_tensor.device)
mask_tensor_pad[0][:num_tokens, :max_seq_len] = mask_tensor
mask = mask_tensor_pad.reshape(
(1, tokens_pad, max_seq_len_pad // 16, 16)).permute(0, 2, 1, 3)
return mask
def aligned_16(tensor: torch.Tensor):
"""Aligned tensor for 310P"""
# Get the size of the current 0th dimension
n = tensor.size(0)
# Calculate the aligned size
n_aligned = ((n + 15) // 16) * 16
# If already aligned, return the original tensor
if n == n_aligned:
return tensor
# Create a new tensor with shape (n_aligned, H, W) and fill it with zeros
new_tensor = torch.zeros(n_aligned,
*tensor.shape[1:],
dtype=tensor.dtype,
device=tensor.device)
# Copy the original tensor to the first N positions of the new tensor
new_tensor[:n] = tensor
return new_tensor
def try_register_lib(lib_name: str, lib_info: str = ""):
import importlib
import importlib.util
try:
module_spec = importlib.util.find_spec(lib_name)
if module_spec is not None:
importlib.import_module(lib_name)
if lib_info:
logger.info(lib_info)
except Exception:
pass
def enable_custom_op():
"""
Enable lazy init for vllm_ascend_C to avoid early initialization of CANN's RTS component.
Ensure that ASCEND_RT_VISIBLE_DEVICES can be dynamically modified before torch.npu.set_device().
"""
global _CUSTOM_OP_ENABLED
if _CUSTOM_OP_ENABLED is not None:
return _CUSTOM_OP_ENABLED
try:
# isort: off
# register custom ops into torch_library here
import vllm_ascend.vllm_ascend_C # type: ignore # noqa: F401
# register the meta implementation for custom kernel if necessary
import vllm_ascend.meta_registration # type: ignore # noqa: F401
# isort: on
_CUSTOM_OP_ENABLED = True
except ImportError:
_CUSTOM_OP_ENABLED = False
logger.warning(
"Warning: Failed to register custom ops, all custom ops will be disabled"
)
return _CUSTOM_OP_ENABLED
def find_hccl_library() -> str:
"""
We either use the library file specified by the `HCCL_SO_PATH`
environment variable, or we find the library file brought by PyTorch.
After importing `torch`, `libhccl.so` can be
found by `ctypes` automatically.
"""
so_file = envs_ascend.HCCL_SO_PATH
# manually load the hccl library
if so_file:
logger.info("Found hccl from environment variable HCCL_SO_PATH=%s",
so_file)
else:
if torch.version.cann is not None:
so_file = "libhccl.so"
else:
raise ValueError("HCCL only supports Ascend NPU backends.")
logger.info("Found hccl from library %s", so_file)
return so_file
def current_stream() -> torch.npu.Stream:
"""
replace `torch.npu.current_stream()` with `vllm.utils.current_stream()`.
it turns out that `torch.npu.current_stream()` is quite expensive,
as it will construct a new stream object at each call.
here we patch `torch.npu.set_stream` to keep track of the current stream
directly, so that we can avoid calling `torch.npu.current_stream()`.
"""
global _CURRENT_STREAM
if _CURRENT_STREAM is None:
# when this function is called before any stream is set,
# we return the default stream.
_CURRENT_STREAM = torch.npu.current_stream()
return _CURRENT_STREAM
def adapt_patch(is_global_patch: bool = False):
if is_global_patch:
from vllm_ascend.patch import platform # noqa: F401
else:
from vllm_ascend.patch import worker # noqa: F401
@functools.cache
def vllm_version_is(target_vllm_version: str):
if envs_ascend.VLLM_VERSION is not None:
vllm_version = envs_ascend.VLLM_VERSION
else:
import vllm
vllm_version = vllm.__version__
try:
return Version(vllm_version) == Version(target_vllm_version)
except InvalidVersion:
raise ValueError(
f"Invalid vllm version {vllm_version} found. A dev version of vllm "
"is installed probably. Set the environment variable VLLM_VERSION "
"to control it by hand. And please make sure the value follows the "
"format of x.y.z.")
def get_max_hidden_layers(hf_config) -> int:
cfg_dict = hf_config.to_dict()
layer_counts = []
def _rec_find(d):
if isinstance(d, dict):
for k, v in d.items():
if k == "num_hidden_layers" and isinstance(v, int):
layer_counts.append(v)
else:
_rec_find(v)
_rec_find(cfg_dict)
if not layer_counts:
raise ValueError("Not found num_hidden_layers in model config.")
return max(layer_counts)
def update_aclgraph_sizes(vllm_config: VllmConfig) -> None:
"""Update ACL graph capture sizes based on hardware limitations"""
# Store original configuration and temporarily clear it
compilation_config = vllm_config.compilation_config
original_sizes, compilation_config.cudagraph_capture_sizes = \
compilation_config.cudagraph_capture_sizes, None
# Calculate parallel configuration factor
hf_config = vllm_config.model_config.hf_config
if hasattr(hf_config, 'num_hidden_layers'):
num_hidden_layers = hf_config.num_hidden_layers
else:
num_hidden_layers = get_max_hidden_layers(hf_config)
parallel_config = vllm_config.parallel_config
# Calculate maximum supported batch sizes considering model architecture
resources_per_graph = num_hidden_layers + 1
if vllm_config.speculative_config is not None:
draft_model_hf_config = vllm_config.speculative_config.draft_model_config.hf_config
resources_per_graph += draft_model_hf_config.num_hidden_layers + 1
# TODO: Find out whether we need to take into account the pp_size
num_comm_groups = sum(size > 1 for size in [
parallel_config.data_parallel_size,
parallel_config.tensor_parallel_size,
])
if os.getenv("HCCL_OP_EXPANSION_MODE") == 'AIV':
# TODO: Find out whether we need to take into account the pp_size
parallel_factor = 1 + num_comm_groups + int(
parallel_config.enable_expert_parallel)
if is_moe_model(vllm_config):
parallel_factor += (parallel_config.data_parallel_size > 1)
# Calculate maximum supported batch sizes considering model architecture on the A2 Hardware Device
# Assume the following case:
# MAX_CAPTURE_SIZE = 1920, num_hidden_layers = 48, data_parallel_size is 1, tensor_parallel_size is 4,
# According to the formula, max_num_batch_sizes = math.floor(1920 / (48 + 1) / 2) = 19
max_num_batch_sizes = math.floor(MAX_CAPTURE_SIZE /
resources_per_graph / parallel_factor)
logger.info(
"Calculated maximum supported batch sizes for ACL graph: %s",
max_num_batch_sizes)
else:
# The above describes an empirical formula applicable to the A2 hardware.
# Under this configuration, HCCL employs the FFTS+ method for execution unfolding,
# which adds only 1 concurrent stream without consuming collective communication execution unfolding streams.
# On A3 hardware, HCCL defaults to the AICPU method.
# This approach may additionally allocate up to rank_size (max 16) - 1 streams per collective communication domain on the device (worst case).
# Using the default collective communication unfolding method on A3 will lead to a significant reduction in the maximum supported sizes.
# Therefore, the calculation formula has been modified as follows:
# Assume the following case:
# MAX_CAPTURE_SIZE = 1920, num_hidden_layers = 48, data_parallel_size is 1, tensor_parallel_size is 4,
# According to the formula, max_num_batch_sizes = math.floor((1920 - 1 * 40) / (48 + 1) / (1 + 1 * 2)) = 12
max_num_batch_sizes = math.floor(
(MAX_CAPTURE_SIZE - num_comm_groups * 40) / resources_per_graph /
(1 + num_comm_groups * 2))
logger.info(
"Calculated maximum supported batch sizes for ACL graph: %s",
max_num_batch_sizes)
logger.warning(
"Currently, communication is performed using FFTS+ method, which reduces "
"the number of available streams and, as a result, limits the range of runtime "
"shapes that can be handled. To both improve communication performance and "
"increase the number of supported shapes, set HCCL_OP_EXPANSION_MODE=AIV."
)
# If original sizes exceed maximum, sample a representative subset
if max_num_batch_sizes < len(original_sizes):
# Sample uniformly from original sizes
step = (len(original_sizes) - 1) / (max_num_batch_sizes - 1)
indices = [round(i * step) for i in range(max_num_batch_sizes)]
# Ensure first and last elements are preserved
indices[0], indices[-1] = 0, len(original_sizes) - 1
sampled_sizes = [original_sizes[i] for i in indices]
compilation_config.init_with_cudagraph_sizes(sampled_sizes)
logger.info(
"Adjusted ACL graph batch sizes for %s model (layers: %d): %d%d sizes",
vllm_config.model_config.architectures[0],
num_hidden_layers,
len(original_sizes),
len(compilation_config.
cudagraph_capture_sizes # type: ignore[arg-type]
))
else:
# No adjustment needed
compilation_config.cudagraph_capture_sizes = original_sizes
logger.info(
"No adjustment needed for ACL graph batch sizes: %s model (layers: %d) with %d sizes",
vllm_config.model_config.architectures[0], num_hidden_layers,
len(original_sizes))
# TODO(wxy): Move to ops module
def dispose_tensor(x: torch.Tensor):
x.set_(torch.empty((0, ), device=x.device, dtype=x.dtype))
class ProfileExecuteDuration:
_instance = None
_observations: List[Tuple[str, Event, Event]] = []
_lock = Lock()
def __new__(cls):
with cls._lock:
if cls._instance is None:
cls._instance = super().__new__(cls)
atexit.register(cls._instance.destroy)
return cls._instance
def destroy(self):
with self._lock:
self._observations.clear()
@contextmanager
def capture_async(self, duration_tag: str):
if not envs_ascend.VLLM_ASCEND_MODEL_EXECUTE_TIME_OBSERVE:
yield
return
observe_start = Event(enable_timing=True)
observe_start.record()
try:
yield
finally:
observe_end = Event(enable_timing=True)
observe_end.record()
with self._lock:
self._observations.append(
(duration_tag, observe_start, observe_end))
def pop_captured_sync(self) -> dict:
"""Pop and synchronize all events in the observation list"""
durations: dict[str, float] = {}
if not envs_ascend.VLLM_ASCEND_MODEL_EXECUTE_TIME_OBSERVE:
return durations
while self._observations:
with self._lock:
tag, observe_start, observe_end = self._observations.pop()
observe_end.synchronize()
durations[tag] = observe_start.elapsed_time(observe_end)
return durations
# TODO(wxy): Move to ops module
def npu_prefetch(input: torch.Tensor,
dependency: torch.Tensor,
max_size: int = 0,
*,
enabled: bool = True):
if not enabled:
return
input_size = input.element_size() * input.numel()
if max_size <= 0 or max_size > input_size:
max_size = input_size
torch_npu.npu_prefetch(input, dependency, max_size)
# TODO(ttanzhiqiang): rm_router_logits
# dp>1 will trigger
# In theory, this solution is only applicable to AllGather and AllGatherEP, because in the dp scenario, the previous operation was gate + two communications, and now it is changed to one communication + gate operation, which can save some communication time. In theory, all moe AllGather and AllGatherEP solutions can follow this logic, but now other moe models (qwen3-235b) dp solutions are not adjusted, so use the switch to control it to prevent code errors.
def get_rm_router_logits_state(ep_size: int, dp_size: int,
is_deepseek_v3_r1: bool):
# the fusion operator torch_npu.npu_grouped_matmul_finalize_routing called by allgather ep
# only supports deepseek v3/r1
if dp_size > 1:
if (envs_ascend.VLLM_ENABLE_FUSED_EXPERTS_ALLGATHER_EP and ep_size > 1
and is_deepseek_v3_r1):
return True
elif ep_size == 1 and is_deepseek_v3_r1:
return True
return False
# TODO(ttanzhiqiang): all_reduce merge
# When all_reduce_merge is in progress, shared_experts does not do all_reduce in mlp, but waits until shared_experts+router_experts are completed before doing all_reduce
# Currently, all_reduce_merge is enabled by default in the AllGather, AllGatherEP and NaiveMulticast scenarios of the deepseek model.
def get_all_reduce_merge_state(ep_size: int, is_deepseek_v3_r1: bool):
# the fusion operator torch_npu.npu_grouped_matmul_finalize_routing called by allgather ep
# only supports deepseek v3/r1
if (envs_ascend.VLLM_ENABLE_FUSED_EXPERTS_ALLGATHER_EP and ep_size > 1
and is_deepseek_v3_r1):
return True
elif ep_size == 1 and is_deepseek_v3_r1:
return True
return False
def register_ascend_customop(vllm_config: Optional[VllmConfig] = None):
"""Register Ascend CustomOP
NOTE: if the register branch requires model type, please use `vllm.config.get_current_vllm_config`,
and ensure this will execute after model config is initilazed.
"""
global _ASCEND_CUSTOMOP_IS_REIGISTERED
if _ASCEND_CUSTOMOP_IS_REIGISTERED:
return
from vllm.model_executor.custom_op import CustomOp
from vllm_ascend.models.layers.mla import AscendMultiHeadLatentAttention
from vllm_ascend.ops.activation import AscendQuickGELU, AscendSiluAndMul
from vllm_ascend.ops.common_fused_moe import AscendFusedMoE
from vllm_ascend.ops.layernorm import AscendQuantRMSNorm, AscendRMSNorm
from vllm_ascend.ops.linear import (AscendColumnParallelLinear,
AscendMergedColumnParallelLinear,
AscendQKVParallelLinear,
AscendRowParallelLinear)
from vllm_ascend.ops.rotary_embedding import (
AscendDeepseekScalingRotaryEmbedding, AscendRotaryEmbedding)
from vllm_ascend.ops.vocab_parallel_embedding import (
AscendLogitsProcessor, AscendParallelLMHead,
AscendVocabParallelEmbedding)
global REGISTERED_ASCEND_OPS
REGISTERED_ASCEND_OPS = {
"QuickGELU": AscendQuickGELU,
"SiluAndMul": AscendSiluAndMul,
"RotaryEmbedding": AscendRotaryEmbedding,
"ColumnParallelLinear": AscendColumnParallelLinear,
"RowParallelLinear": AscendRowParallelLinear,
"MergedColumnParallelLinear": AscendMergedColumnParallelLinear,
"QKVParallelLinear": AscendQKVParallelLinear,
"DeepseekScalingRotaryEmbedding": AscendDeepseekScalingRotaryEmbedding,
"VocabParallelEmbedding": AscendVocabParallelEmbedding,
"ParallelLMHead": AscendParallelLMHead,
"LogitsProcessor": AscendLogitsProcessor,
"RMSNorm": AscendRMSNorm,
"FusedMoE": AscendFusedMoE,
"MultiHeadLatentAttention": AscendMultiHeadLatentAttention,
}
if vllm_config is not None and \
vllm_config.quant_config is not None and \
any("norm.bias" in name for name in vllm_config.quant_config.quant_description.keys()):
REGISTERED_ASCEND_OPS["RMSNorm"] = AscendQuantRMSNorm
for name, op_cls in REGISTERED_ASCEND_OPS.items():
CustomOp.register_oot(_decorated_op_cls=op_cls, name=name)
# NOTE: Keep this at last to ensure all custom actions are registered
_ASCEND_CUSTOMOP_IS_REIGISTERED = True
# TODO(zzzzwwjj): Currently there is no clear SOC_VERSION policy for A2 and A3 in CANN.
# So we get the version dynamically. In the future, we should get the version info from _build_info like 310p does.
class AscendSocVersion(Enum):
A2 = 0
A3 = 1
UNDEFINED = 2
_ascend_soc_version = None
def init_ascend_soc_version():
soc_version = torch_npu.npu.get_soc_version()
global _ascend_soc_version
if 220 <= soc_version <= 225:
_ascend_soc_version = AscendSocVersion.A2
elif 250 <= soc_version <= 255:
_ascend_soc_version = AscendSocVersion.A3
else:
_ascend_soc_version = AscendSocVersion.UNDEFINED
def get_ascend_soc_version():
global _ascend_soc_version
assert _ascend_soc_version is not None
return _ascend_soc_version
def lmhead_tp_enable() -> bool:
return get_ascend_config().lmhead_tensor_parallel_size is not None
def oproj_tp_enable() -> bool:
return get_ascend_config().oproj_tensor_parallel_size is not None
def mlp_tp_enable() -> bool:
return envs_ascend.VLLM_ASCEND_ENABLE_MLP_OPTIMIZE
def matmul_allreduce_enable() -> bool:
return envs_ascend.VLLM_ASCEND_ENABLE_MATMUL_ALLREDUCE
def dense_optim_enable() -> bool:
return envs_ascend.VLLM_ASCEND_ENABLE_DENSE_OPTIMIZE
def is_moe_model(vllm_config: VllmConfig):
config = vllm_config.model_config.hf_config
return any('experts' in key.lower() for key in config.to_dict())
def weak_ref_tensor(tensor: Any) -> Any:
"""
Create a weak reference to a tensor.
The new tensor will share the same data as the original tensor,
but will not keep the original tensor alive.
"""
if isinstance(tensor, torch.Tensor):
return torch.ops._C_ascend.weak_ref_tensor(tensor)
else:
return tensor
def weak_ref_tensors(
tensors: Union[torch.Tensor, list[torch.Tensor], tuple[torch.Tensor]]
) -> Union[torch.Tensor, list[Any], tuple[Any], Any]:
"""
Convenience function to create weak references to tensors,
for single tensor, list of tensors or tuple of tensors.
"""
if isinstance(tensors, torch.Tensor):
return weak_ref_tensor(tensors)
if isinstance(tensors, list):
return [weak_ref_tensor(t) for t in tensors]
if isinstance(tensors, tuple):
return tuple(weak_ref_tensor(t) for t in tensors)
raise ValueError("Invalid type for tensors")