Files
vllm-ascend/vllm_ascend/ops/rotary_embedding.py
Jiawei Li e57cca971c Fix the bugs about operator registration by PyTorch Dispatcher (#2786)
**Background:**

There are two principles about operator registration in PyTorch
- The same namespace can be only registered once by `TORCH_LIBRARY`
- The operator signatures can be only registered once by `def`

Considering that all custom operators defined in the current repo are
only used by Ascend, instead of defining a common operator schema by
vLLM, all accelerators then follow this operator schema and complete the
implementation based on their respective hardware, which is conducive to
functional abstraction.

Therefore, we can rename the operator registration namespace to an
Ascend-specific namespace(**_C_ascend**).

Related ISSUE: https://github.com/vllm-project/vllm-ascend/issues/2742


- vLLM version: main
- vLLM main:
f592b3174b

Signed-off-by: FFFrog <ljw1101.vip@gmail.com>
2025-09-13 11:58:52 +08:00

356 lines
15 KiB
Python

#
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This file is a part of the vllm-ascend project.
#
import math
from typing import Optional, Tuple
import torch
import torch_npu
from vllm.forward_context import get_forward_context
from vllm.model_executor.layers.rotary_embedding import (
DeepseekScalingRotaryEmbedding, RotaryEmbedding)
from vllm_ascend.platform import NPUPlatform
from vllm_ascend.utils import enable_custom_op, is_310p
def _custom_rotary_embedding_enabled(query, neox_style, head_size):
return query.dtype == torch.float16 and neox_style and head_size % 32 == 0 and enable_custom_op(
)
def _rope_forward_oot(
self,
positions: torch.Tensor,
query: torch.Tensor,
key: torch.Tensor,
is_neox_style: bool,
offsets: Optional[torch.Tensor] = None
) -> Tuple[torch.Tensor, torch.Tensor]:
query_shape, key_shape = query.shape, key.shape
if self.cos_sin_cache.device != query.device:
self.cos_sin_cache = self.cos_sin_cache.to(query.device)
if self.cos_sin_cache.dtype != query.dtype:
self.cos_sin_cache = self.cos_sin_cache.to(query.dtype)
# adopt custom kernel path for rotary_embedding
if _custom_rotary_embedding_enabled(query, is_neox_style,
self.head_size) and not is_310p():
query, key = torch.ops._C_ascend.rotary_embedding(
positions,
query,
key,
self.head_size,
self.cos_sin_cache,
is_neox_style,
)
return query.view(query_shape), key.view(key_shape)
if offsets is not None:
raise NotImplementedError(
"Batched rotary embedding is currently not supported on NPU.")
else:
if self.cos is not None and \
self.sin is not None:
# If cos and sin are generated outside, use npu_apply_rotary_pos_emb to avoid redundant calculation.
# This method requires head_size and rotary_dim equal 128 and neox_style is True
query = query.contiguous().view(1, query.shape[0], -1,
self.head_size)
key = key.contiguous().view(1, key.shape[0], -1, self.head_size)
torch_npu.npu_apply_rotary_pos_emb(query, key, self.cos, self.sin)
elif self.rotary_dim < self.head_size:
num_tokens = query.shape[0]
query = query.view(num_tokens, -1, self.head_size)
key = key.view(num_tokens, -1, self.head_size)
q_rot = query[..., :self.rotary_dim]
q_pass = query[..., self.rotary_dim:]
k_rot = key[..., :self.rotary_dim]
k_pass = key[..., self.rotary_dim:]
q_rot = q_rot.contiguous().view(num_tokens, -1)
k_rot = k_rot.contiguous().view(num_tokens, -1)
torch_npu._npu_rotary_embedding(
positions,
q_rot,
k_rot,
self.head_size,
self.cos_sin_cache,
is_neox_style,
)
q_rot = q_rot.view(num_tokens, -1, self.rotary_dim)
k_rot = k_rot.view(num_tokens, -1, self.rotary_dim)
q = torch.cat((q_rot, q_pass), dim=-1).reshape(query_shape)
k = torch.cat((k_rot, k_pass), dim=-1).reshape(key_shape)
return q, k
else:
# TODO: Remove the contiguous in the future.
query = query.contiguous().view(query.shape[0], -1)
key = key.contiguous().view(key.shape[0], -1)
torch_npu._npu_rotary_embedding(
positions,
query,
key,
self.head_size,
self.cos_sin_cache,
is_neox_style,
)
return query.view(query_shape), key.view(key_shape)
class AscendRotaryEmbedding(RotaryEmbedding):
def __init__(
self,
head_size: int,
rotary_dim: int,
max_position_embeddings: int,
base: float,
is_neox_style: bool,
dtype: torch.dtype,
) -> None:
self.cos = None
self.sin = None
super().__init__(head_size, rotary_dim, max_position_embeddings, base,
is_neox_style, dtype)
def forward_oot(
self,
positions: torch.Tensor,
query: torch.Tensor,
key: torch.Tensor,
offsets: Optional[torch.Tensor] = None,
is_neox_style_override: Optional[bool] = None,
):
is_neox_style = self.is_neox_style
if is_neox_style_override is not None:
is_neox_style = is_neox_style_override
forward_context = get_forward_context()
is_first_layer = forward_context.is_first_layer
# Generate cos and sin outside layers to avoid repeated calculation.
if is_neox_style and self.head_size == 128 and self.cos_sin_cache.shape[
-1] == 128:
if is_first_layer:
cos_sin = self.cos_sin_cache.index_select(0, positions)
last_dim = cos_sin.size()[-1]
cos, sin = cos_sin.reshape(-1, 2, last_dim // 2).repeat(
1, 1, 2).chunk(2, dim=-2)
# BSNH
self.cos = cos.view(1, -1, 1, last_dim).contiguous()
self.sin = sin.view(1, -1, 1, last_dim).contiguous()
forward_context.is_first_layer = False
return _rope_forward_oot(self, positions, query, key, is_neox_style,
offsets)
class AscendDeepseekScalingRotaryEmbedding(DeepseekScalingRotaryEmbedding):
def __init__(
self,
head_size: int,
rotary_dim: int,
max_position_embeddings: int,
base: int,
is_neox_style: bool,
scaling_factor: float,
dtype: torch.dtype,
*,
extrapolation_factor: float = 1,
attn_factor: float = 1,
beta_fast: int = 32,
beta_slow: int = 1,
mscale: float = 1,
mscale_all_dim: float = 0,
) -> None:
# Note: we adopt the native huggingface deepseek rope initialization code from
# https://huggingface.co/deepseek-ai/DeepSeek-V3-0324/blob/main/modeling_deepseek.py for
# its more ascend compute friendly
self.scaling_factor = scaling_factor
self.extrapolation_factor = extrapolation_factor
self.attn_factor = attn_factor
self.beta_fast = beta_fast
self.beta_slow = beta_slow
# Get n-d magnitude scaling corrected for interpolation.
self.mscale = float(
self._yarn_get_mscale(self.scaling_factor, float(mscale)) /
self._yarn_get_mscale(self.scaling_factor, float(mscale_all_dim)) *
attn_factor)
super(DeepseekScalingRotaryEmbedding,
self).__init__(head_size, rotary_dim, max_position_embeddings,
base, is_neox_style, dtype)
# NOTE: For ascend friendly computing, reorder sin and cos cache
self.max_seq_len = math.ceil(max_position_embeddings * scaling_factor)
self._set_cos_sin_cache(self.max_seq_len,
device=NPUPlatform.device_type,
dtype=dtype)
def _yarn_get_mscale(self, scale: float = 1, mscale: float = 1) -> float:
if scale <= 1:
return 1.0
return 0.1 * mscale * math.log(scale) + 1.0
def _rotate_half(self, x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., :x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2:]
return torch.cat((-x2, x1), dim=-1)
def _yarn_linear_ramp_mask(self, min_value, max_value, dim):
# Note: The if conditional branch is not used here
# to solve MTP compilation error.
max_value += (min_value == max_value).float() * 0.001
linear_func = (torch.arange(dim, dtype=torch.float32) -
min_value) / (max_value - min_value)
ramp_func = torch.clamp(linear_func, 0, 1)
return ramp_func
# Inverse dim formula to find dim based on number of rotations
def _yarn_find_correction_dim(self,
num_rotations,
dim,
base=10000,
max_position_embeddings=2048):
# Note: use torch instead of math to solve MTP compilation error.
return (dim * torch.log(
torch.tensor(max_position_embeddings) /
(num_rotations * 2 * torch.pi))) / (2 *
torch.log(torch.tensor(base)))
# Find dim range bounds based on rotations
def _yarn_find_correction_range(self,
low_rot,
high_rot,
dim,
base=10000,
max_position_embeddings=2048):
# Note: use torch instead of math to solve MTP compilation error.
low = torch.floor(
self._yarn_find_correction_dim(low_rot, dim, base,
max_position_embeddings))
high = torch.ceil(
self._yarn_find_correction_dim(high_rot, dim, base,
max_position_embeddings))
# Note: use torch instead of max/min to solve MTP compilation error.
return torch.clamp(low, min=0), torch.clamp(high, max=dim - 1)
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
def _apply_rotary_pos_emb(self,
q,
k,
cos,
sin,
position_ids,
unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`):
The position indices of the tokens corresponding to the query and key tensors. For example, this can be
used to pass offsetted position ids when working with a KV-cache.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos[position_ids]
sin = sin[position_ids]
cos = cos[:, None, None, :]
sin = sin[:, None, None, :]
if len(q.shape) == 3:
q = q[:, :, None, :]
if len(k.shape) == 2:
k = k[:, None, None, :]
elif len(k.shape) == 3:
k = k[:, :, None, :]
b, h_q, s, d = q.shape
q = q.view(b, h_q, s, d // 2, 2).transpose(4, 3).reshape(b, h_q, s, d)
b, h_k, s, d = k.shape
k = k.view(b, h_k, s, d // 2, 2).transpose(4, 3).reshape(b, h_k, s, d)
q_embed = (q * cos) + (self._rotate_half(q) * sin)
k_embed = (k * cos) + (self._rotate_half(k) * sin)
q_embed = q_embed.view(b, h_q, d)
k_embed = k_embed.view(b, h_k, d)
return q_embed, k_embed
def _set_cos_sin_cache(self, max_seq_len, device, dtype):
dim = self.rotary_dim
freq_extra = 1.0 / (self.base**(
torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim))
freq_inter = 1.0 / (self.scaling_factor * self.base**(
torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim))
low, high = self._yarn_find_correction_range(
self.beta_fast,
self.beta_slow,
dim,
self.base,
self.max_position_embeddings,
)
inv_freq_mask = 1.0 - self._yarn_linear_ramp_mask(
low, high, dim // 2).to(device=device, dtype=torch.float32)
inv_freq = freq_inter * (1 -
inv_freq_mask) + freq_extra * inv_freq_mask
self.register_buffer("inv_freq", inv_freq, persistent=False)
t = torch.arange(max_seq_len, device=device, dtype=torch.float32)
freqs = torch.outer(t, inv_freq)
cos_cached = torch.cat([freqs, freqs], dim=-1).cos() * self.mscale
sin_cached = torch.cat([freqs, freqs], dim=-1).sin() * self.mscale
cos_cached = cos_cached.to(dtype)
sin_cached = sin_cached.to(dtype)
cache = torch.cat(
[freqs.cos() * self.mscale,
freqs.sin() * self.mscale], dim=-1).to(dtype)
self.register_buffer("cos_sin_cache", cache, persistent=False)
self.register_buffer("cos_cached", cos_cached, persistent=False)
self.register_buffer("sin_cached", sin_cached, persistent=False)
def forward(self,
positions: torch.Tensor,
query: torch.Tensor,
key: torch.Tensor,
offsets: Optional[torch.Tensor] = None):
if len(key.shape) == 2:
key = key[:, None, :]
# Note: we implement the non neox_style method with shuffle the last dim and neox style
# calculation method which is also more compute friendly to the ascend machine
# https://huggingface.co/deepseek-ai/DeepSeek-V3-0324/blob/main/modeling_deepseek.py
is_neox_style = True
if self.is_neox_style is False:
b, h_q, d = query.shape
query = query.view(b, h_q, d // 2,
2).transpose(3, 2).reshape(b, h_q, d)
b, h_k, d = key.shape
key = key.view(b, h_k, d // 2, 2).transpose(3,
2).reshape(b, h_k, d)
q_pe, k_pe = _rope_forward_oot(self, positions, query, key,
is_neox_style, offsets)
return q_pe, k_pe