Files
vllm-ascend/tests/e2e/singlecard/ops/test_rotary_embedding.py
Jiawei Li e57cca971c Fix the bugs about operator registration by PyTorch Dispatcher (#2786)
**Background:**

There are two principles about operator registration in PyTorch
- The same namespace can be only registered once by `TORCH_LIBRARY`
- The operator signatures can be only registered once by `def`

Considering that all custom operators defined in the current repo are
only used by Ascend, instead of defining a common operator schema by
vLLM, all accelerators then follow this operator schema and complete the
implementation based on their respective hardware, which is conducive to
functional abstraction.

Therefore, we can rename the operator registration namespace to an
Ascend-specific namespace(**_C_ascend**).

Related ISSUE: https://github.com/vllm-project/vllm-ascend/issues/2742


- vLLM version: main
- vLLM main:
f592b3174b

Signed-off-by: FFFrog <ljw1101.vip@gmail.com>
2025-09-13 11:58:52 +08:00

352 lines
12 KiB
Python

# Copyright 2023 The vLLM team.
# Copyright (c) Huawei Technologies Co., Ltd. 2024-2025. All rights reserved.
# Adapted from
# https://github.com/vllm-project/vllm/blob/main/vllm/tests/kernels/test_rotary_embedding.py
import gc
from typing import Optional, Tuple, Union
import pytest
import torch
import torch.nn as nn
from vllm_ascend.utils import enable_custom_op
enable_custom_op()
# Only Neox style true scenario is supported for now
IS_NEOX_STYLE = [True]
DTYPES = [torch.half]
HEAD_SIZES = [64, 64, 96, 128, 256]
ROTARY_DIMS = [None, 32] # None means rotary dim == head size
NUM_HEADS = [17] # Arbitrary values for testing
BATCH_SIZES = [5] # Arbitrary values for testing
SEQ_LENS = [11, 4096] # Arbitrary values for testing
NUM_TOKENS = [10, 21]
SEEDS = [0]
DEVICES = [f"npu:{0}"]
# Set tolerance to 1 for quant ops
DEFAULT_ATOL = 1e-3
DEFAULT_RTOL = 1e-3
def _apply_rotary_emb(
x: torch.Tensor,
cos: torch.Tensor,
sin: torch.Tensor,
is_neox_style: bool,
) -> torch.Tensor:
"""
Args:
x: [num_tokens, num_heads, head_size]
cos: [num_tokens, head_size // 2]
sin: [num_tokens, head_size // 2]
is_neox_style: Whether to use the Neox-style or GPT-J-style rotary
positional embeddings.
"""
cos = cos.unsqueeze(-2).to(x.dtype)
sin = sin.unsqueeze(-2).to(x.dtype)
if is_neox_style:
x1, x2 = torch.chunk(x, 2, dim=-1)
else:
x1 = x[..., ::2]
x2 = x[..., 1::2]
o1 = x1 * cos - x2 * sin
o2 = x2 * cos + x1 * sin
if is_neox_style:
return torch.cat((o1, o2), dim=-1)
else:
return torch.stack((o1, o2), dim=-1).flatten(-2)
# adapted from https://github.com/vllm-project/vllm/vllm/model_executor/layers/rotary_embedding.py
class RotaryEmbedding(nn.Module):
"""Original rotary positional embedding."""
def __init__(
self,
head_size: int,
rotary_dim: int,
max_position_embeddings: int,
base: int,
is_neox_style: bool,
dtype: torch.dtype,
) -> None:
super().__init__()
self.head_size = head_size
self.rotary_dim = rotary_dim
self.max_position_embeddings = max_position_embeddings
self.base = base
self.is_neox_style = is_neox_style
self.dtype = dtype
cache = self._compute_cos_sin_cache()
cache = cache.to(dtype)
self.cos_sin_cache: torch.Tensor
self.register_buffer("cos_sin_cache", cache, persistent=False)
def _compute_inv_freq(self, base: Union[int, float]) -> torch.Tensor:
"""Compute the inverse frequency."""
# NOTE(woosuk): To exactly match the HF implementation, we need to
# use CPU to compute the cache and then move it to GPU. However, we
# create the cache on GPU for faster initialization. This may cause
# a slight numerical difference between the HF implementation and ours.
inv_freq = 1.0 / (base**(torch.arange(
0, self.rotary_dim, 2, dtype=torch.float) / self.rotary_dim))
return inv_freq
def _compute_cos_sin_cache(self) -> torch.Tensor:
"""Compute the cos and sin cache."""
inv_freq = self._compute_inv_freq(self.base)
t = torch.arange(self.max_position_embeddings, dtype=torch.float)
freqs = torch.einsum("i,j -> ij", t, inv_freq)
cos = freqs.cos()
sin = freqs.sin()
cache = torch.cat((cos, sin), dim=-1)
return cache
def forward_native(
self,
positions: torch.Tensor,
query: torch.Tensor,
key: torch.Tensor,
offsets: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""A PyTorch-native implementation of forward()."""
if offsets is not None:
positions = positions + offsets
positions = positions.flatten()
num_tokens = positions.shape[0]
cos_sin = self.cos_sin_cache.index_select(0, positions)
cos, sin = cos_sin.chunk(2, dim=-1)
query_shape = query.shape
query = query.view(num_tokens, -1, self.head_size)
query_rot = query[..., :self.rotary_dim]
query_pass = query[..., self.rotary_dim:]
query_rot = _apply_rotary_emb(query_rot, cos, sin, self.is_neox_style)
query = torch.cat((query_rot, query_pass), dim=-1).reshape(query_shape)
key_shape = key.shape
key = key.view(num_tokens, -1, self.head_size)
key_rot = key[..., :self.rotary_dim]
key_pass = key[..., self.rotary_dim:]
key_rot = _apply_rotary_emb(key_rot, cos, sin, self.is_neox_style)
key = torch.cat((key_rot, key_pass), dim=-1).reshape(key_shape)
return query, key
# test with leading dimension and merge seqlen and batch_size as num_tokens
@pytest.mark.parametrize("is_neox_style", IS_NEOX_STYLE)
@pytest.mark.parametrize("batch_size", BATCH_SIZES)
@pytest.mark.parametrize("seq_len", SEQ_LENS)
@pytest.mark.parametrize("num_heads", NUM_HEADS)
@pytest.mark.parametrize("head_size", HEAD_SIZES)
@pytest.mark.parametrize("rotary_dim", ROTARY_DIMS)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
@pytest.mark.parametrize("device", DEVICES)
@torch.inference_mode()
def test_rotary_embedding_quant_with_leading_dim(
is_neox_style: bool,
batch_size: int,
seq_len: int,
num_heads: int,
head_size: int,
rotary_dim: Optional[int],
dtype: torch.dtype,
seed: int,
device: str,
max_position: int = 8192,
base: int = 10000,
) -> None:
if rotary_dim is None:
rotary_dim = head_size
torch.set_default_device(device)
if rotary_dim is None:
rotary_dim = head_size
rope = RotaryEmbedding(head_size, rotary_dim, max_position, base,
is_neox_style, dtype)
rope = rope.to(dtype=dtype)
num_tokens = batch_size * seq_len
positions = torch.randint(0, max_position, (batch_size * seq_len, ))
qkv_tensor = torch.randn(num_tokens,
num_heads * head_size * 3,
dtype=dtype)
query, key, _ = qkv_tensor.split(
[num_heads * head_size, num_heads * head_size, num_heads * head_size],
dim=-1,
)
ref_query, ref_key = rope.forward_native(positions, query, key)
query, key = torch.ops._C_ascend.rotary_embedding(
positions,
query,
key,
rope.head_size,
rope.cos_sin_cache,
rope.is_neox_style,
)
# Compare the results.
torch.testing.assert_close(query.view(ref_query.size()),
ref_query,
atol=DEFAULT_ATOL,
rtol=DEFAULT_RTOL)
torch.testing.assert_close(key.view(ref_key.size()),
ref_key,
atol=DEFAULT_ATOL,
rtol=DEFAULT_RTOL)
gc.collect()
torch.npu.empty_cache()
torch.npu.reset_peak_memory_stats()
class ModelwithRotaryEmbedding(nn.Module):
def __init__(
self,
hidden_size: int,
num_heads: int,
head_size: int,
rotary_dim: int,
max_position_embeddings: int,
base: int,
is_neox_style: bool,
dtype: torch.dtype,
) -> None:
super().__init__()
self.qkv_proj = nn.Linear(hidden_size, num_heads * head_size * 3)
self.rope = RotaryEmbedding(
head_size=head_size,
rotary_dim=rotary_dim,
max_position_embeddings=max_position_embeddings,
base=base,
is_neox_style=is_neox_style,
dtype=dtype,
)
self.o_proj = nn.Linear(num_heads * head_size, hidden_size)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
offsets: Optional[torch.Tensor] = None,
) -> torch.Tensor:
# we simulated a simple attention layer to test if it can be seamlessly captured into aclgraph
qkv = self.qkv_proj(hidden_states)
q, k, v = qkv.chunk(3, dim=-1)
query, key = torch.ops._C_ascend.rotary_embedding(
positions,
q,
k,
self.rope.head_size,
self.rope.cos_sin_cache,
self.rope.is_neox_style,
)
query = query.view(q.shape)
key = key.view(k.shape)
o = self.o_proj(query)
return o
# The first graph seems will have some accuracy issue when directly run pytest on the ops folder,
# add a warmup graph replay for workaround
ACL_GRPAH_FIRST_RUN = True
@pytest.mark.parametrize("is_neox_style", IS_NEOX_STYLE)
@pytest.mark.parametrize("num_tokens", BATCH_SIZES)
@pytest.mark.parametrize("num_heads", NUM_HEADS)
@pytest.mark.parametrize("head_size", HEAD_SIZES)
@pytest.mark.parametrize("rotary_dim", ROTARY_DIMS)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
@pytest.mark.parametrize("device", DEVICES)
@torch.inference_mode()
def test_capture_rotary_embedding_in_aclgraph(
is_neox_style: bool,
num_tokens: int,
num_heads: int,
head_size: int,
rotary_dim: int,
dtype: torch.dtype,
seed: int,
device: str,
max_position_embeddings: int = 8192,
base: int = 10000,
):
"""Test if the rotary embedding can be captured in aclgraph."""
torch.manual_seed(seed)
torch.set_default_device(device)
if rotary_dim is None:
rotary_dim = head_size
model = ModelwithRotaryEmbedding(
hidden_size=num_heads * head_size,
num_heads=num_heads,
head_size=head_size,
rotary_dim=rotary_dim,
max_position_embeddings=max_position_embeddings,
base=base,
is_neox_style=is_neox_style,
dtype=dtype,
)
def custom_op_checking_backend(gm: torch.fx.GraphModule, example_input):
# Validate if the rotary_embedding custom kernel is indeed inside the graph by
# string match
graph = str(gm.graph)
assert "_C_ascend.rotary_embedding" in graph
return gm
static_positions = torch.randint(0, max_position_embeddings,
(num_tokens, ))
static_hidden_states = torch.randn(num_tokens,
num_heads * head_size,
dtype=dtype,
device="npu")
compiled_model = torch.compile(model, backend=custom_op_checking_backend)
stream = torch.npu.Stream()
stream.wait_stream(torch.npu.current_stream())
with torch.npu.stream(stream):
# warmup the fx graph before capture
for i in range(3):
static_output = compiled_model(static_positions,
static_hidden_states,
offsets=None)
stream.wait_stream(torch.npu.current_stream())
aclgraph = torch.npu.NPUGraph()
with torch.npu.graph(aclgraph):
# Capture the model in aclgraph.
static_output = compiled_model(static_positions, static_hidden_states)
# Capture the model in aclgraph.
random_filled_positions = torch.randint(0,
max_position_embeddings,
(num_tokens, ),
device="npu")
random_filled_hidden_states = torch.randn(num_tokens,
num_heads * head_size,
dtype=dtype,
device="npu")
static_positions.copy_(random_filled_positions)
static_hidden_states.copy_(random_filled_hidden_states)
aclgraph.replay()
global ACL_GRPAH_FIRST_RUN
if ACL_GRPAH_FIRST_RUN:
ACL_GRPAH_FIRST_RUN = False
return
output_reference = model(static_positions, static_hidden_states)
torch.testing.assert_close(static_output,
output_reference,
atol=DEFAULT_ATOL,
rtol=DEFAULT_RTOL)
gc.collect()
torch.npu.empty_cache()
torch.npu.reset_peak_memory_stats()