Files
vllm-ascend/tests/e2e/singlecard/ops/test_bgmv_shrink.py
Jiawei Li e57cca971c Fix the bugs about operator registration by PyTorch Dispatcher (#2786)
**Background:**

There are two principles about operator registration in PyTorch
- The same namespace can be only registered once by `TORCH_LIBRARY`
- The operator signatures can be only registered once by `def`

Considering that all custom operators defined in the current repo are
only used by Ascend, instead of defining a common operator schema by
vLLM, all accelerators then follow this operator schema and complete the
implementation based on their respective hardware, which is conducive to
functional abstraction.

Therefore, we can rename the operator registration namespace to an
Ascend-specific namespace(**_C_ascend**).

Related ISSUE: https://github.com/vllm-project/vllm-ascend/issues/2742


- vLLM version: main
- vLLM main:
f592b3174b

Signed-off-by: FFFrog <ljw1101.vip@gmail.com>
2025-09-13 11:58:52 +08:00

46 lines
1.2 KiB
Python

import gc
import torch
from vllm_ascend.utils import enable_custom_op
enable_custom_op()
DEFAULT_ATOL = 1e-3
DEFAULT_RTOL = 1e-3
def bgmv_shrink_cpu_impl(x: torch.Tensor, w: torch.Tensor,
indices: torch.Tensor, y: torch.tensor,
scaling: float) -> torch.Tensor:
W = w[indices, :, :].transpose(-1, -2).to(torch.float32)
z = torch.bmm(x.unsqueeze(1).to(torch.float32), W).squeeze()
y[:, :] += z * scaling
return y
@torch.inference_mode()
def test_bgmv_shrink():
B = 1
x = torch.randn([B, 128], dtype=torch.float16)
w = torch.randn([64, 16, 128], dtype=torch.float16)
indices = torch.zeros([B], dtype=torch.int64)
y = torch.zeros([B, 16])
x_npu = x.npu()
w_npu = w.npu()
indices_npu = indices.npu()
y_npu = y.npu()
y = bgmv_shrink_cpu_impl(x, w, indices, y, 0.5)
torch.ops._C_ascend.bgmv_shrink(x_npu, w_npu, indices_npu, y_npu, 0.5)
# Compare the results.
torch.testing.assert_close(y_npu.cpu(),
y,
atol=DEFAULT_ATOL,
rtol=DEFAULT_RTOL)
gc.collect()
torch.npu.empty_cache()
torch.npu.reset_peak_memory_stats()