Files
vllm-ascend/csrc/kernels/pos_encoding_kernels.cpp
Pleaplusone ce8259975e [core] Support custom ascendc kernels in vllm-ascend (#233)
This PR add custom ascendc kernel rotary_embedding support in
vllm-ascend, related CMakeLists and setuptools is also added in this PR.

Related: https://github.com/vllm-project/vllm-ascend/issues/156

---------

Signed-off-by: ganyi <pleaplusone.gy@gmail.com>
2025-04-03 14:52:34 +08:00

367 lines
19 KiB
C++

/*
* Copyright (c) Huawei Technologies Co., Ltd. 2024. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "kernel_operator.h"
#include "kernel_tpipe_impl.h"
#include "kernel_tensor_impl.h"
#include "kernel_type.h"
#include "kernel_operator_intf.h"
#include "inner_interface/inner_kernel_operator_intf.h"
#include <stdio.h>
#include "types.h"
#include "utils.h"
using vllm_ascend::AccType;
using vllm_ascend::local_mem_copy;
template <typename scalar_t, bool isNeox> class RotaryEmbedding {
// NOTE(ganyi): we use 32K as load stride for pipe, need to find another way to
// retrive this size from runtime for more Soc support
static int constexpr loadSize = 1024 * 4;
using dst_t = scalar_t;
using acc_t = typename AccType<scalar_t>::type;
// only half tensor have cast instruct to int8, hardcode acc_dst_t as half
using local_scalar_t = AscendC::LocalTensor<scalar_t>;
using local_acc_t = AscendC::LocalTensor<acc_t>;
using local_dst_t = AscendC::LocalTensor<dst_t>;
public:
__aicore__ inline RotaryEmbedding()
{
}
// Allocate buffers for input and output queue and the temp buffer used during kernel compute process,
// this init process happens only in the kernel compute on a single vector core.
__aicore__ inline void init(__gm__ int64_t *positions, __gm__ void *queryDst, __gm__ void *keyDst,
__gm__ scalar_t *query, __gm__ scalar_t *key, __gm__ scalar_t *cosSinCache,
const int rotDim, const int64_t dstQueryStride,
const int64_t dstKeyStride, const int64_t queryStride, const int64_t keyStride,
const int numHeads, const int numKvHeads, const int headSize, AscendC::TPipe *pipe)
{
pipe_ = pipe;
rotDim_ = rotDim;
// query stride and key stride is used to handle the strided tensor which is not contiguous on num_tokens dim
queryStride_ = queryStride;
keyStride_ = keyStride;
dstQueryStride_ = dstQueryStride;
dstKeyStride_ = dstKeyStride;
numHeads_ = numHeads;
numKvHeads_ = numKvHeads;
headSize_ = headSize;
embedDim_ = rotDim / 2;
pipe_->InitBuffer(inQue_, 1 /* buffer_num */, loadSize /* buffer_size */);
pipe_->InitBuffer(inQueSinCos_, 1 /* buffer_num */, rotDim_ * sizeof(scalar_t) /* buffer_size */);
pipe_->InitBuffer(outQue_, 1 /* buffer_num */, loadSize /* buffer_size */);
// 2 temperary calculation buffer
calcTmpBufferOffset_ = 0;
// 1 upcast buffer for bf16 (headSize)
upcastInputBufferOffset_ = calcTmpBufferOffset_ + sizeof(acc_t) * embedDim_ * 2;
// 1 upcast temp buffer for bf16 (2 * embed_dim)
upcastTempBufferOffset_ = upcastInputBufferOffset_ + sizeof(acc_t) * headSize_;
// 2 sin cos upcast buffer for bf16
cosSinUpcastBufferOffset_ = upcastTempBufferOffset_ + sizeof(acc_t) * 2 * embedDim_;
// 2. bf16 path: needs 2 cos sin upcast buffer size
// 3. fp16 path: needs 2 temperary calculation buffer size
tempBufferSize_ = cosSinUpcastBufferOffset_ + 2 * embedDim_ * sizeof(acc_t);
// need to consider upcast the bf16 to fp32, so we might need 4 buffer just in case
// 2 temperary buffer, 2 input buffer, 1 cos buffer, 1 sin buffer, 2 scale buffer (headSize), 2 zp
// buffer(headSize int8), 1 dst_temp buffer(headSize, int32)
pipe_->InitBuffer(calcBuf_, tempBufferSize_ /* buffer_size */);
if constexpr (!std::is_same_v<scalar_t, acc_t>) {
pipe_->InitBuffer(copyBuf_, loadSize);
}
}
__aicore__ inline void update_mem_offset(__gm__ int64_t *positions, __gm__ void *queryDst, __gm__ void *keyDst,
__gm__ scalar_t *query, __gm__ scalar_t *key, __gm__ scalar_t *cosSinCache,
const int rotDim, const int64_t dstQueryStride, const int64_t dstKeyStride,
const int64_t queryStride, const int64_t keyStride, const int numHeads,
const int numKvHeads, const int headSize, const int64_t idx)
{
int64_t pos = positions[idx];
cosSin_.SetGlobalBuffer(cosSinCache + pos * rotDim_, rotDim_);
query_.SetGlobalBuffer(query + queryStride * idx, headSize * numHeads_);
key_.SetGlobalBuffer(key + keyStride * idx, headSize * numKvHeads_);
queryDst_.SetGlobalBuffer(reinterpret_cast<__gm__ dst_t *>(queryDst) + dstQueryStride * idx,
headSize * numHeads_);
keyDst_.SetGlobalBuffer(reinterpret_cast<__gm__ dst_t *>(keyDst) + dstKeyStride * idx, headSize * numKvHeads_);
}
// compute per head for neox on bf16
template <typename acc_t_, typename std::enable_if<!std::is_same_v<acc_t_, scalar_t>, void>::type * = nullptr>
__aicore__ inline void
neox_compute(local_scalar_t src, local_dst_t dst, AscendC::LocalTensor<acc_t_> sin, AscendC::LocalTensor<acc_t_> cos,
AscendC::LocalTensor<acc_t_> upcastInputBuffer, AscendC::LocalTensor<acc_t_> calcTmpBuffer)
{
// slice dst
local_dst_t dstX = dst;
local_dst_t dstY = dst[embedDim_];
// slice src
local_scalar_t srcX = src;
local_scalar_t srcY = src[embedDim_];
// slice temp buffer
local_acc_t calcTmpBufferX = calcTmpBuffer;
local_acc_t calcTmpBufferY = calcTmpBuffer[embedDim_];
// slice upcast input buffer
local_acc_t upcastBufferX = upcastInputBuffer;
local_acc_t upcastBufferY = upcastBufferX[embedDim_];
// dst x calc
Cast(upcastInputBuffer, src, AscendC::RoundMode::CAST_NONE, headSize_);
Mul(calcTmpBufferX, upcastBufferX, cos, embedDim_);
Mul(calcTmpBufferY, upcastBufferY, sin, embedDim_);
Sub(calcTmpBufferX, calcTmpBufferX, calcTmpBufferY, embedDim_);
Cast(dstX, calcTmpBufferX, AscendC::RoundMode::CAST_TRUNC, embedDim_);
// dst y calc
Mul(calcTmpBufferX, upcastBufferX, sin, embedDim_);
Mul(calcTmpBufferY, upcastBufferY, cos, embedDim_);
Add(calcTmpBufferX, calcTmpBufferX, calcTmpBufferY, embedDim_);
Cast(dstY, calcTmpBufferX, AscendC::RoundMode::CAST_TRUNC, embedDim_);
}
// compute per head output for neox
template <typename acc_t_, typename std::enable_if<std::is_same_v<acc_t_, scalar_t>, void>::type * = nullptr>
__aicore__ inline void
neox_compute(local_scalar_t src, local_dst_t dst, AscendC::LocalTensor<acc_t_> sin, AscendC::LocalTensor<acc_t_> cos,
AscendC::LocalTensor<acc_t_> upcastInputBuffer, AscendC::LocalTensor<acc_t_> calcTmpBuffer)
{
// slice dst buffer
local_dst_t dstX = dst;
local_dst_t dstY = dst[embedDim_];
// slice src buffer
local_scalar_t srcX = src;
local_scalar_t srcY = src[embedDim_];
// slice temp buffer
local_acc_t calcTmpBufferX = calcTmpBuffer;
local_acc_t calcTmpBufferY = calcTmpBuffer[embedDim_];
// dst x calc
Mul(calcTmpBufferX, srcX, cos, embedDim_);
Mul(calcTmpBufferY, srcY, sin, embedDim_);
Sub(dstX, calcTmpBufferX, calcTmpBufferY, embedDim_);
// dst y calc
Mul(calcTmpBufferX, srcX, sin, embedDim_);
Mul(calcTmpBufferY, srcY, cos, embedDim_);
Add(dstY, calcTmpBufferX, calcTmpBufferY, embedDim_);
}
__aicore__ inline void compute_qk(AscendC::GlobalTensor<scalar_t> srcG, AscendC::GlobalTensor<dst_t> dstG,
local_acc_t localCos, local_acc_t localSin, local_acc_t upcastInputBuffer,
local_acc_t calcTmpBuffer, int loopCnt, int tailHeads, int loadStride,
int headNumPerLoad)
{
for (int loopNum = 0; loopNum < loopCnt; ++loopNum) {
local_scalar_t src = inQue_.AllocTensor<scalar_t>();
local_dst_t dst = outQue_.AllocTensor<dst_t>();
AscendC::DataCopy(src, srcG[loopNum * loadStride], loadStride);
inQue_.EnQue(src);
local_scalar_t srcDeque = inQue_.DeQue<scalar_t>();
if constexpr (!std::is_same_v<scalar_t, acc_t>) {
int elem_num = loadStride / sizeof(scalar_t);
AscendC::LocalTensor<acc_t> upBuffer = copyBuf_.GetWithOffset<acc_t>(elem_num, 0);
Cast(upBuffer, srcDeque, AscendC::RoundMode::CAST_TRUNC, elem_num);
Cast(dst, upBuffer, AscendC::RoundMode::CAST_TRUNC, elem_num);
} else {
local_mem_copy(dst, srcDeque, loadStride);
}
for (int i = 0; i < headNumPerLoad; ++i) {
neox_compute(srcDeque[i * headSize_], dst[i * headSize_], localSin, localCos, upcastInputBuffer,
calcTmpBuffer);
}
outQue_.EnQue(dst);
local_dst_t dstDeque = outQue_.DeQue<dst_t>();
AscendC::DataCopy(dstG[loopNum * loadStride], dstDeque, loadStride);
outQue_.FreeTensor(dstDeque);
inQue_.FreeTensor(srcDeque);
}
// process tail
{
local_scalar_t src = inQue_.AllocTensor<scalar_t>();
local_dst_t dst = outQue_.AllocTensor<dst_t>();
AscendC::DataCopy(src, srcG[loopCnt * loadStride], tailHeads * headSize_);
inQue_.EnQue(src);
local_scalar_t srcDeque = inQue_.DeQue<scalar_t>();
if constexpr (!std::is_same_v<scalar_t, acc_t>) {
int elem_num = tailHeads * headSize_ / sizeof(scalar_t);
AscendC::LocalTensor<acc_t> upBuffer = copyBuf_.GetWithOffset<acc_t>(elem_num, 0);
Cast(upBuffer, srcDeque, AscendC::RoundMode::CAST_TRUNC, elem_num);
Cast(dst, upBuffer, AscendC::RoundMode::CAST_TRUNC, elem_num);
} else {
local_mem_copy(dst, srcDeque, tailHeads * headSize_);
}
for (int i = 0; i < tailHeads; ++i) {
neox_compute(srcDeque[i * headSize_], dst[i * headSize_], localSin, localCos, upcastInputBuffer,
calcTmpBuffer);
}
outQue_.EnQue(dst);
local_dst_t dstDeque = outQue_.DeQue<dst_t>();
AscendC::DataCopy(dstG[loopCnt * loadStride], dstDeque, tailHeads * headSize_);
outQue_.FreeTensor(dstDeque);
inQue_.FreeTensor(srcDeque);
}
}
__aicore__ inline void compute_function()
{
local_scalar_t cosSinLocal = inQueSinCos_.AllocTensor<scalar_t>();
AscendC::DataCopy(cosSinLocal, cosSin_, embedDim_ * 2);
inQueSinCos_.EnQue(cosSinLocal);
local_scalar_t localSinCosDeque = inQueSinCos_.DeQue<scalar_t>();
local_scalar_t localCos = localSinCosDeque;
local_scalar_t localSin = localSinCosDeque[embedDim_];
local_acc_t calcTmpBuffer;
local_acc_t upcastInputBuffer;
local_acc_t upcastTempBuffer;
local_acc_t cosSinUpcastBuffer;
local_acc_t scaleBuffer;
local_acc_t offsetBuffer;
calcTmpBuffer = calcBuf_.GetWithOffset<acc_t>(embedDim_ * 2, calcTmpBufferOffset_);
upcastInputBuffer = calcBuf_.GetWithOffset<acc_t>(headSize_, upcastInputBufferOffset_);
upcastTempBuffer = calcBuf_.GetWithOffset<acc_t>(embedDim_ * 2, upcastTempBufferOffset_);
cosSinUpcastBuffer = calcBuf_.GetWithOffset<acc_t>(embedDim_ * 2, cosSinUpcastBufferOffset_);
local_acc_t cosAccBuffer;
local_acc_t sinAccBuffer;
if constexpr (!std::is_same_v<scalar_t, acc_t>) {
Cast(cosSinUpcastBuffer, localSinCosDeque, AscendC::RoundMode::CAST_NONE, 2 * embedDim_);
cosAccBuffer = cosSinUpcastBuffer;
sinAccBuffer = cosSinUpcastBuffer[embedDim_];
} else {
cosAccBuffer = localCos;
sinAccBuffer = localSin;
}
constexpr const int loadSizeByElem = loadSize / sizeof(scalar_t);
int64_t headNumPerLoad = loadSizeByElem / headSize_;
int64_t loopCnt = numHeads_ / headNumPerLoad;
int64_t tailHeads = numHeads_ - loopCnt * headNumPerLoad;
int64_t loadStride = headNumPerLoad * headSize_;
int64_t loopCntKv = numKvHeads_ / headNumPerLoad;
int64_t tailHeadsKv = numKvHeads_ - loopCntKv * headNumPerLoad;
compute_qk(query_, queryDst_, cosAccBuffer, sinAccBuffer, upcastInputBuffer,
calcTmpBuffer, loopCnt, tailHeads, loadStride, headNumPerLoad);
compute_qk(key_, keyDst_, cosAccBuffer, sinAccBuffer, upcastInputBuffer, calcTmpBuffer,
loopCntKv, tailHeadsKv, loadStride, headNumPerLoad);
inQueSinCos_.FreeTensor(localSinCosDeque);
}
private:
AscendC::TPipe *pipe_;
AscendC::TQue<AscendC::QuePosition::VECIN, 1> inQue_, inQueSinCos_;
AscendC::TQue<AscendC::QuePosition::VECOUT, 1> outQue_;
AscendC::TBuf<AscendC::TPosition::VECCALC> calcBuf_;
AscendC::TBuf<AscendC::TPosition::VECCALC> copyBuf_;
AscendC::GlobalTensor<dst_t> queryDst_;
AscendC::GlobalTensor<dst_t> keyDst_;
AscendC::GlobalTensor<scalar_t> query_;
AscendC::GlobalTensor<scalar_t> key_;
AscendC::GlobalTensor<scalar_t> cosSin_;
int rotDim_;
int embedDim_;
int64_t queryStride_;
int64_t keyStride_;
int64_t dstQueryStride_;
int64_t dstKeyStride_;
int numHeads_;
int numKvHeads_;
int headSize_;
int calcTmpBufferOffset_;
int upcastInputBufferOffset_;
int upcastTempBufferOffset_;
int cosSinUpcastBufferOffset_;
int tempBufferSize_;
};
// Note: Need to use macro to instaniate all the target functions here, for the current build system dose not support template call in cpp
// We use C style symbol here for kernel compilation, cpp style kernel entry may lead to compilation failure
#define ROPE_CUSTOM_KERNEL_TYPE_DECLARE(TYPE, NEOX) \
extern "C" __global__ __aicore__ void rope_custom_##NEOX##_##TYPE( \
__gm__ int64_t* positions, __gm__ void* queryDst, __gm__ void* keyDst, __gm__ TYPE* query, __gm__ TYPE* key, \
__gm__ TYPE* cosSinCache, const int rotDim, const int64_t queryStride, const int64_t keyStride, \
const int64_t dstQueryStride, const int64_t dstKeyStride, const int numHeads, const int numKvHeads, \
const int headSize, const int64_t numTokens, const int loopNum, const int coreNum) \
{ \
AscendC::TPipe pipe; \
RotaryEmbedding<TYPE, NEOX> op{}; \
op.init(positions, queryDst, keyDst, query, key, cosSinCache, rotDim, dstQueryStride, dstKeyStride, \
queryStride, keyStride, numHeads, numKvHeads, headSize, &pipe); \
for (int64_t i = AscendC::GetBlockIdx(); i < numTokens; i += coreNum) { \
op.update_mem_offset(positions, queryDst, keyDst, query, key, cosSinCache, rotDim, dstQueryStride, dstKeyStride, \
queryStride, keyStride, numHeads, numKvHeads, headSize, i); \
op.compute_function(); \
} \
}
#define ROPE_CUSTOM_KERNEL_DECLARE(TYPE) \
ROPE_CUSTOM_KERNEL_TYPE_DECLARE(TYPE, true); \
ROPE_CUSTOM_KERNEL_TYPE_DECLARE(TYPE, false);
// Declare all the kernel entry here
ROPE_CUSTOM_KERNEL_DECLARE(half)
ROPE_CUSTOM_KERNEL_DECLARE(bfloat16_t)
namespace vllm_ascend {
#define ROTARY_EMBEDDING_KERNEL_CALL(TYPE) \
if (isNeox) \
rope_custom_true_##TYPE<<<blockDim, nullptr, stream>>>( \
positions, queryDst, keyDst, reinterpret_cast<TYPE *>(query), reinterpret_cast<TYPE *>(key), \
reinterpret_cast<TYPE *>(cosSinCache), rotDim, queryStride, keyStride, dstQueryStride, dstKeyStride, \
numHeads, numKvHeads, headSize, numTokens, loopCnt, blockDim); \
else \
rope_custom_false_##TYPE<<<blockDim, nullptr, stream>>>( \
positions, queryDst, keyDst, reinterpret_cast<TYPE *>(query), reinterpret_cast<TYPE *>(key), \
reinterpret_cast<TYPE *>(cosSinCache), rotDim, queryStride, keyStride, dstQueryStride, dstKeyStride, \
numHeads, numKvHeads, headSize, numTokens, loopCnt, blockDim);
// maximum number for runtime to launch a ascendc kernel.
// we use this to constrain the maximum number of block size
static const int64_t maxParallelSize = 65535;
extern void rotary_embedding_impl(AscendType type, bool isNeox, void *stream, int64_t *positions, void *queryDst,
void *keyDst, void *query, void *key, void *cosSinCache, const int rotDim,
const int64_t queryStride, const int64_t keyStride, const int64_t dstQueryStride,
const int64_t dstKeyStride, const int numHeads, const int numKvHeads,
const int headSize, const int64_t numTokens, const uint32_t loopCnt,
uint32_t aivNum)
{
int blockDim = maxParallelSize > numTokens ? numTokens : maxParallelSize;
if (type == AscendType::FP16) {
ROTARY_EMBEDDING_KERNEL_CALL(half);
} else if (type == AscendType::BF16) {
ROTARY_EMBEDDING_KERNEL_CALL(bfloat16_t);
} else {
return;
}
}
} // namespace vllm_ascend