Files
vllm-ascend/vllm_ascend/ops/fused_moe.py
Li Wang c7446438a9 [1/N][CI] Move linting system to pre-commits hooks (#1256)
### What this PR does / why we need it?

Follow vllm-project/vllm lint way:
https://github.com/vllm-project/vllm/blob/main/.pre-commit-config.yaml

Enable pre-commit to avoid some low level error  AMAP.

This pr is one step of #1241, The purpose is make linting system more
clear and convenient, on this step, Mainly did the following things:
yapf, actionlint, ruff, typos, isort, mypy, png-lint, signoff-commit,
enforce-import-regex-instead-of-re.

TODO: 
- clang-format(check for csrc with google style)
need clean code, disable for now 
- pymarkdown
need clean code, disable for now 
- shellcheck
need clean code, disable for now 

### Does this PR introduce _any_ user-facing change?

Only developer UX change:

https://vllm-ascend--1256.org.readthedocs.build/en/1256/developer_guide/contributing.html#run-lint-locally

```
pip install -r requirements-lint.txt && pre-commit install
bash format.sh
```

### How was this patch tested?

CI passed with new added/existing test.

Co-authored-by: Yikun [yikunkero@gmail.com](mailto:yikunkero@gmail.com)
Co-authored-by: wangli
[wangli858794774@gmail.com](mailto:wangli858794774@gmail.com)
- vLLM version: v0.9.1
- vLLM main:
5358cce5ff

---------

Signed-off-by: wangli <wangli858794774@gmail.com>
2025-07-10 14:17:15 +08:00

1400 lines
57 KiB
Python

# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
# Copyright 2023 The vLLM team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This file is a part of the vllm-ascend project.
# Adapted from vllm/tests/kernels/test_moe.py
import os
from typing import Any, Callable, List, Optional, Tuple, Union
import torch
import torch.distributed as dist
import torch_npu
from torch import nn
from vllm.config import get_current_vllm_config
from vllm.distributed import (GroupCoordinator, get_tensor_model_parallel_rank,
get_tensor_model_parallel_world_size,
tensor_model_parallel_all_reduce)
from vllm.distributed.parallel_state import get_dp_group, get_tp_group
from vllm.forward_context import get_forward_context
from vllm.model_executor.layers.fused_moe.config import \
FusedMoEConfig # isort: skip
from vllm.model_executor.layers.fused_moe.config import \
FusedMoEParallelConfig # isort: skip
from vllm.model_executor.layers.fused_moe.layer import (
FusedMoE, UnquantizedFusedMoEMethod, determine_expert_map)
from vllm.model_executor.layers.quantization.base_config import \
QuantizationConfig
import vllm_ascend.envs as envs_ascend
from vllm_ascend.ascend_config import get_ascend_config
from vllm_ascend.distributed.communication_op import \
data_parallel_reduce_scatter
from vllm_ascend.distributed.parallel_state import get_ep_group, get_etp_group
from vllm_ascend.ops.expert_load_balancer import ExpertLoadBalancer
from vllm_ascend.utils import (FusedMoEState, dispose_tensor,
get_all_reduce_merge_state, get_fused_moe_state,
is_310p, npu_stream_switch, npu_wait_tensor)
MOE_ALL2ALL_BUFFER: bool = envs_ascend.MOE_ALL2ALL_BUFFER
def process_topk_ids(topk_ids: torch.Tensor, expert_num: int, ep_size: int,
max_row_per_ep_rank: int, num_tokens: int,
top_k: int) -> tuple[torch.Tensor, torch.Tensor]:
original_total_elements = num_tokens * top_k
device = topk_ids.device
original_dtype = topk_ids.dtype
if original_total_elements == 0:
output_len = ep_size * max_row_per_ep_rank
topk_ids_pad = torch.full((output_len, ),
expert_num,
dtype=original_dtype,
device=device)
unpad_indices = torch.full((original_total_elements, ),
-1,
dtype=torch.long,
device=device)
return topk_ids_pad, unpad_indices
experts_per_ep_rank_val = expert_num // ep_size
if experts_per_ep_rank_val == 0:
raise ValueError(
"expert_num // ep_size is 0, which leads to division by zero in ep_rank calculation. "
"Ensure expert_num >= ep_size.")
assigned_ep_rank = (topk_ids.float() /
experts_per_ep_rank_val).to(original_dtype)
indices_arange = torch.arange(topk_ids.shape[0], device=device)
is_new_segment = torch.cat(
(torch.tensor([True], device=device), assigned_ep_rank[1:]
!= assigned_ep_rank[:-1]))
temp_start_markers = torch.full_like(indices_arange,
-1,
dtype=indices_arange.dtype)
temp_start_markers[is_new_segment] = indices_arange[is_new_segment]
start_offset_for_each_token = torch.cummax(temp_start_markers, dim=0)[0]
token_intra_ep_rank_idx = indices_arange - start_offset_for_each_token
is_kept_mask = token_intra_ep_rank_idx < max_row_per_ep_rank
cumsum_kept = torch.cumsum(is_kept_mask.float(), dim=0).to(torch.long)
indices_in_rec_cond_list_for_all = cumsum_kept - 1
unpad_indices = torch.where(
is_kept_mask, indices_in_rec_cond_list_for_all,
torch.tensor(-1, device=device, dtype=torch.long))
output_len = ep_size * max_row_per_ep_rank
topk_ids_pad = torch.full((output_len, ),
expert_num,
dtype=original_dtype,
device=device)
if topk_ids.shape[0] > 0:
all_destination_indices = assigned_ep_rank * max_row_per_ep_rank + token_intra_ep_rank_idx
temp_pad_buffer = torch.full((output_len + 1, ),
expert_num,
dtype=original_dtype,
device=device)
output_len_tensor = torch.tensor(output_len,
dtype=torch.long,
device=device)
scatter_indices = torch.where(is_kept_mask, all_destination_indices,
output_len_tensor)
temp_pad_buffer.scatter_(0, scatter_indices, topk_ids)
topk_ids_pad = temp_pad_buffer[:output_len]
return topk_ids_pad, unpad_indices
def fused_experts_with_mc2(
hidden_states: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
top_k: int,
expert_map: torch.Tensor = None,
moe_all_to_all_group_name: Optional[str] = None,
shared_experts: Optional[Any] = None
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
global_bs = 0
moe_expert_num = len(expert_map)
kwargs_mc2 = {
"x": hidden_states,
"expert_ids": topk_ids,
"expert_shard_type": 0,
"shared_expert_rank_num": 0,
"moe_expert_num": moe_expert_num,
"global_bs": global_bs,
}
rank = torch.distributed.get_rank()
quant_mode = 0
ep_group = get_ep_group().device_group
local_rank = torch.distributed.get_rank(group=ep_group)
all_to_all_group_size = torch.distributed.get_world_size(ep_group)
tp_size = get_etp_group().world_size
tp_rank = rank % tp_size
stage1_kwargs = {
"scales": None,
"quant_mode": quant_mode,
"group_ep": moe_all_to_all_group_name,
"ep_world_size": all_to_all_group_size,
"ep_rank_id": local_rank,
# "group_tp": self.moe_rs_group_name,
"group_tp": moe_all_to_all_group_name,
"tp_world_size": tp_size,
"tp_rank_id": tp_rank,
}
kwargs_mc2.update(stage1_kwargs)
output = torch_npu.npu_moe_distribute_dispatch(**kwargs_mc2)
expand_x, dynamic_scale, expand_idx, expert_token_nums, ep_recv_counts = output[
0:5]
if shared_experts is not None:
with npu_stream_switch("moe_secondary", 0):
npu_wait_tensor(hidden_states, topk_weights)
shared_gate_up, _ = shared_experts.gate_up_proj(hidden_states)
npu_wait_tensor(shared_gate_up, expand_x)
shared_act = shared_experts.act_fn(shared_gate_up)
w1 = w1.transpose(1, 2)
group_list = expert_token_nums.to(torch.int64)
gate_up_out_list = torch_npu.npu_grouped_matmul(
x=[expand_x],
weight=[w1],
split_item=2,
# 1 means count mode, to avoid cumulative operation of the group list
group_list_type=1,
group_type=0,
group_list=group_list,
)
# TODO: Remove this in the future.
gate_up_out = torch.cat(gate_up_out_list, dim=0)
gate_up_out = torch_npu.npu_swiglu(gate_up_out)
w2 = w2.transpose(1, 2)
down_out_list = torch_npu.npu_grouped_matmul(
x=[gate_up_out],
weight=[w2],
split_item=2,
group_list_type=1,
group_type=0,
group_list=group_list,
)
down_out_list = torch.cat(down_out_list, dim=0)
# moeCombine
kwargs_mc2 = {
"expand_x": down_out_list,
"expert_ids": topk_ids,
"expand_idx": expand_idx,
"expert_scales": topk_weights.to(torch.float32),
"expert_shard_type": 0,
"shared_expert_rank_num": 0,
"moe_expert_num": moe_expert_num,
"global_bs": 0,
}
tp_recv_counts = output[5]
stage3_kwargs = {
"ep_send_counts": ep_recv_counts,
"group_ep": moe_all_to_all_group_name,
"ep_world_size": all_to_all_group_size,
"ep_rank_id": local_rank,
"tp_send_counts": tp_recv_counts,
# "group_tp": self.moe_rs_group_name,
"group_tp": moe_all_to_all_group_name,
"tp_world_size": tp_size,
"tp_rank_id": tp_rank,
}
kwargs_mc2.update(stage3_kwargs)
hidden_states = torch_npu.npu_moe_distribute_combine(**kwargs_mc2)
if shared_experts is None:
return hidden_states
else:
with npu_stream_switch("moe_secondary", 0):
npu_wait_tensor(shared_act, down_out_list)
shared_hidden_states, _ = shared_experts.down_proj(shared_act)
return hidden_states, shared_hidden_states
def apply_mlp(hidden_states_wrapper: List[torch.Tensor],
w1: torch.Tensor,
w2: torch.Tensor,
group_list: torch.Tensor,
group_list_type: int = 1) -> torch.Tensor:
"""
apply MLP: gate_up_proj -> swiglu -> down_proj
Args:
hidden_states_wrapper: wrapper of input hidden states with shape (num_tokens, hidden_size).
w1: expert weights1 with shape
(num_experts, hidden_size, intermediate_size * 2)
w2: expert weights2 with shape
(num_experts, intermediate_size, hidden_size)
group_list: number of tokens for each expert, follow cumsum mode, and
with shape (num_experts).
transpose_weight:
w1: (num_experts, intermediate_size * 2, hidden_size) ->
(num_experts, hidden_size, intermediate_size * 2)
w2: (num_experts, hidden_size, intermediate_size) ->
(num_experts, intermediate_size, hidden_size)
Returns:
hidden_states: output hidden states after MLP.
"""
assert len(hidden_states_wrapper) == 1
hidden_states = hidden_states_wrapper.pop()
w1 = w1.transpose(1, 2)
hidden_states = torch_npu.npu_grouped_matmul(
x=[hidden_states],
weight=[w1],
split_item=2,
group_list_type=group_list_type,
group_type=0,
group_list=group_list,
)
hidden_states = torch.cat(hidden_states, dim=0)
hidden_states = torch_npu.npu_swiglu(hidden_states)
w2 = w2.transpose(1, 2)
hidden_states = torch_npu.npu_grouped_matmul(
x=[hidden_states],
weight=[w2],
split_item=2,
group_list_type=group_list_type,
group_type=0,
group_list=group_list,
)
hidden_states = torch.cat(hidden_states, dim=0)
return hidden_states
def fused_experts_with_all2all(
hidden_states: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
top_k: int,
expert_map: torch.Tensor = None,
ep_group: GroupCoordinator = None,
):
original_shape = hidden_states.shape
if len(original_shape) == 3:
hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
num_tokens, _ = hidden_states.shape
num_experts = w1.shape[0]
device = hidden_states.device
if expert_map is not None:
global_num_experts = len(expert_map)
local_num_experts = global_num_experts // ep_group.world_size
row_idx_len = num_tokens * top_k
row_idx = (torch.arange(0,
row_idx_len,
dtype=torch.int32,
device=device).view(top_k, -1).permute(
1, 0).contiguous())
hidden_states, expanded_row_idx, expanded_expert_idx = torch_npu.npu_moe_init_routing(
hidden_states,
row_idx=row_idx,
expert_idx=topk_ids,
active_num=num_tokens)
global_expert_tokens = torch.bincount(expanded_expert_idx,
minlength=global_num_experts)
scatter_sizes = global_expert_tokens.view(ep_group.world_size,
-1).sum(-1)
gather_sizes = torch.empty_like(scatter_sizes)
dist.all_to_all_single(gather_sizes,
scatter_sizes,
group=ep_group.device_group)
scatter_size_list = scatter_sizes.cpu().tolist()
gather_size_list = gather_sizes.cpu().tolist()
expanded_expert_idx = expanded_expert_idx % local_num_experts
hidden_states = ep_group.all_to_all(hidden_states, 0, 0,
scatter_size_list,
gather_size_list)
local_expert_idx = ep_group.all_to_all(expanded_expert_idx, 0, 0,
scatter_size_list,
gather_size_list)
sorted_local_expert_idx, sorted_idx = torch.sort(local_expert_idx)
expert_tokens = torch_npu.npu_moe_compute_expert_tokens(
sorted_local_expert_idx, local_num_experts).to(torch.int64)
hidden_states = hidden_states[sorted_idx]
else:
row_idx_len = num_tokens * top_k
row_idx = torch.arange(0,
row_idx_len,
dtype=torch.int32,
device=topk_weights.device).view(
top_k, -1).permute(1, 0).contiguous()
hidden_states, expanded_row_idx, expanded_expert_idx = torch_npu.npu_moe_init_routing(
hidden_states,
row_idx=row_idx,
expert_idx=topk_ids,
active_num=num_tokens)
expert_tokens = torch_npu.npu_moe_compute_expert_tokens(
expanded_expert_idx, num_experts)
expert_tokens = expert_tokens.to(torch.int64)
w1 = w1.transpose(1, 2)
gate_up_out_list = torch_npu.npu_grouped_matmul(
x=[hidden_states],
weight=[w1],
split_item=2,
group_list_type=0,
group_type=0,
group_list=expert_tokens,
)
# TODO: Remove this in the future.
hidden_states = torch.cat(gate_up_out_list, dim=0)
hidden_states = torch_npu.npu_swiglu(hidden_states)
w2 = w2.transpose(1, 2)
down_out_list = torch_npu.npu_grouped_matmul(
x=[hidden_states],
weight=[w2],
split_item=2,
group_list_type=0,
group_type=0,
group_list=expert_tokens,
)
hidden_states = torch.cat(down_out_list, dim=0)
if expert_map is not None:
resorted_idx = torch.argsort(sorted_idx)
hidden_states = hidden_states[resorted_idx]
hidden_states = ep_group.all_to_all(hidden_states, 0, 0,
gather_size_list,
scatter_size_list)
final_hidden_states = torch_npu.npu_moe_finalize_routing(
hidden_states,
skip1=None,
skip2=None,
bias=None,
scales=topk_weights,
expanded_src_to_dst_row=expanded_row_idx,
export_for_source_row=topk_ids,
)
else:
# TODO: Reorder device memory 2 times here, replace the current
# implementation here when suitable operators become available.
final_hidden_states = torch_npu.npu_moe_finalize_routing(
hidden_states,
skip1=None,
skip2=None,
bias=None,
scales=topk_weights,
expanded_src_to_dst_row=expanded_row_idx,
export_for_source_row=topk_ids,
)
if len(original_shape) == 3:
final_hidden_states = final_hidden_states.view(original_shape)
return final_hidden_states
# currently expert parallelism implemented with all2all
# is under-optimized.
def fused_experts_with_all2all_buffer(
hidden_states: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
top_k: int,
max_model_len: int,
global_batch_size: int,
expert_map: torch.Tensor = None,
ep_group: GroupCoordinator = None,
):
original_shape = hidden_states.shape
if len(original_shape) == 3:
hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
num_tokens, _ = hidden_states.shape
device = hidden_states.device
global_num_experts = len(expert_map)
local_num_experts = global_num_experts // ep_group.world_size
row_idx_len = num_tokens * top_k
row_idx = (torch.arange(0, row_idx_len, dtype=torch.int32,
device=device).view(top_k,
-1).permute(1, 0).contiguous())
hidden_states, expanded_row_idx, expanded_expert_idx = torch_npu.npu_moe_init_routing(
hidden_states,
row_idx=row_idx,
expert_idx=topk_ids,
active_num=num_tokens)
max_row_per_ep_rank = (-(-global_batch_size // ep_group.world_size) *
max_model_len // ep_group.world_size +
1) * top_k * 2
expert_idx_buffer_scatter, unpad_indices = process_topk_ids(
expanded_expert_idx, global_num_experts, ep_group.world_size,
max_row_per_ep_rank, num_tokens, top_k)
hidden_states_pad_idx = torch.zeros(
expert_idx_buffer_scatter.shape,
dtype=expert_idx_buffer_scatter.dtype,
device=expert_idx_buffer_scatter.device)
non_pad_len = torch.sum((expert_idx_buffer_scatter
!= global_num_experts).to(torch.int32))
hidden_states_pad_idx[expert_idx_buffer_scatter !=
global_num_experts] = torch.arange(
non_pad_len,
dtype=expert_idx_buffer_scatter.dtype,
device=hidden_states.device)
hidden_states_buffer_scatter = hidden_states[hidden_states_pad_idx]
expert_idx_buffer_gather = torch.empty_like(
expert_idx_buffer_scatter,
dtype=expert_idx_buffer_scatter.dtype,
device=expert_idx_buffer_scatter.device)
hidden_states_buffer_gather = torch.empty_like(
hidden_states_buffer_scatter,
dtype=hidden_states_buffer_scatter.dtype,
device=hidden_states_buffer_scatter.device)
dist.all_to_all_single(expert_idx_buffer_gather,
expert_idx_buffer_scatter,
group=ep_group.device_group)
dist.all_to_all_single(hidden_states_buffer_gather,
hidden_states_buffer_scatter,
group=ep_group.device_group)
mask = expert_idx_buffer_gather != global_num_experts
local_expert_idx = expert_idx_buffer_gather[mask] - ep_group.rank * (
global_num_experts // ep_group.world_size)
hidden_states = hidden_states_buffer_gather[mask]
idx_type = local_expert_idx.dtype
sorted_local_expert_idx, sorted_idx = torch.sort(local_expert_idx.float())
sorted_local_expert_idx = sorted_local_expert_idx.to(idx_type)
expert_tokens = torch_npu.npu_moe_compute_expert_tokens(
sorted_local_expert_idx, local_num_experts).to(torch.int64)
hidden_states = hidden_states[sorted_idx]
group_list_type = 0
hidden_states_wrapper = [hidden_states]
del hidden_states
hidden_states = apply_mlp(hidden_states_wrapper,
w1,
w2,
expert_tokens,
group_list_type=group_list_type)
resorted_idx = torch.argsort(sorted_idx.float()).to(sorted_idx.dtype)
hidden_states = hidden_states[resorted_idx]
hidden_states_scatter = torch.zeros(
(mask.shape[0], hidden_states.shape[1]),
dtype=hidden_states.dtype,
device=hidden_states.device)
hidden_states_scatter[mask] = hidden_states
hidden_states_gatter = torch.empty_like(
hidden_states_scatter,
dtype=hidden_states_scatter.dtype,
device=hidden_states_scatter.device)
dist.all_to_all_single(hidden_states_gatter,
hidden_states_scatter,
group=ep_group.device_group)
hidden_states_gatter = hidden_states_gatter[expert_idx_buffer_scatter !=
global_num_experts]
if hidden_states_gatter.shape[0] != row_idx_len:
hidden_states = torch.zeros((row_idx_len, hidden_states.shape[1]),
dtype=hidden_states.dtype,
device=hidden_states.device)
hidden_states[unpad_indices != -1] = hidden_states_gatter
else:
# TODO: Reorder device memory 2 times here, replace the current
hidden_states = hidden_states_gatter
final_hidden_states = torch_npu.npu_moe_finalize_routing(
hidden_states,
skip1=None,
skip2=None,
bias=None,
scales=topk_weights,
expanded_src_to_dst_row=expanded_row_idx,
export_for_source_row=topk_ids,
)
if len(original_shape) == 3:
final_hidden_states = final_hidden_states.view(original_shape)
return final_hidden_states
def fused_experts_moge(
hidden_states: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
top_k: int,
global_num_experts: int,
expert_map: torch.Tensor = None,
apply_router_weight_on_input: bool = False,
) -> torch.Tensor:
"""
Args:
hidden_states: Hidden states of shape (num_tokens, hidden_size).
w1: Expert weights1 of shape (num_experts, intermediate_size * 2, hidden_size).
w2: Expert weights2 of shape (num_experts, hidden_size, intermediate_size).
topk_weights: Routing weights of shape (num_tokens, top_k).
topk_ids: Selected expert IDs of shape (num_tokens, top_k).
top_k: Number of experts to select.
expert_map: Expert mapping of shape (num_experts,).
Returns:
hidden_states: Hidden states after routing.
"""
ep_size = get_ep_group().world_size
local_num_experts = global_num_experts // ep_size
local_num_group = top_k // ep_size
if apply_router_weight_on_input:
assert (topk_weights.dim() == 2
), "`topk_weights` should be in shape (num_tokens, topk)"
_, topk = topk_weights.shape
assert (
topk == 1
), "Only support topk=1 when `apply_router_weight_on_input` is True"
hidden_states = hidden_states * topk_weights.to(hidden_states.dtype)
bsz, _ = hidden_states.shape
flatten_topk_ids = topk_ids.view(-1)
sorted_topk_ids = torch.argsort(flatten_topk_ids.float())
sorted_topk_ids = sorted_topk_ids.to(torch.int32)
sorted_hidden_states = hidden_states.index_select(
0, sorted_topk_ids // local_num_group)
experts_id = torch.arange(0,
local_num_experts,
dtype=topk_ids.dtype,
device=topk_ids.device)
num_tokens_per_expert = (flatten_topk_ids.unsqueeze(-1) == experts_id).to(
torch.float32).sum(0)
topk_scales = topk_weights.view(-1).index_select(
0, sorted_topk_ids).unsqueeze(-1)
group_list = num_tokens_per_expert.cumsum(dim=0).to(torch.int64)
w1 = w1.transpose(1, 2)
gate_up_out = torch_npu.npu_grouped_matmul(
x=[sorted_hidden_states],
weight=[w1],
split_item=2,
group_list_type=0,
group_type=0,
group_list=group_list,
)[0]
if is_310p():
gate_up_out = torch_npu.npu_swiglu(gate_up_out.to(torch.float32)).to(
torch.float16)
else:
gate_up_out = torch_npu.npu_swiglu(gate_up_out)
gate_up_out *= topk_scales
w2 = w2.transpose(1, 2)
down_out_list = torch_npu.npu_grouped_matmul(
x=[gate_up_out],
weight=[w2],
split_item=2,
group_list_type=0,
group_type=0,
group_list=group_list,
)[0]
unsorted_topk_ids = torch.argsort(sorted_topk_ids.float()).to(torch.int32)
unsorted_hidden_states = down_out_list.index_select(0, unsorted_topk_ids)
final_hidden_states = unsorted_hidden_states.reshape(
bsz, top_k // ep_size, -1).sum(1)
return final_hidden_states
def fused_experts(
hidden_states: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
topk_weights: torch.Tensor,
topk_ids: torch.Tensor,
top_k: int,
expert_map: torch.Tensor = None,
apply_router_weight_on_input: bool = False,
max_num_tokens: Optional[int] = None,
) -> torch.Tensor:
"""
Fused experts with top-k routing.
Args:
hidden_states: Hidden states of shape (num_tokens, hidden_size).
w1: Expert weights1 of shape (num_experts, intermediate_size * 2, hidden_size).
w2: Expert weights2 of shape (num_experts, hidden_size, intermediate_size).
topk_weights: Routing weights of shape (num_tokens, top_k).
topk_ids: Selected expert IDs of shape (num_tokens, top_k).
top_k: Number of experts to select.
expert_map: Expert mapping of shape (num_experts,).
Returns:
hidden_states: Hidden states after routing.
"""
"""
# Check constraints.
assert hidden_states.shape[1] == w1.shape[2], "Hidden size mismatch"
assert topk_weights.shape == topk_ids.shape, "topk shape mismatch"
assert hidden_states.is_contiguous(), "Hidden_states must be contiguous"
assert w1.is_contiguous(), "Expert weights1 must be contiguous"
assert w2.is_contiguous(), "Expert weights2 must be contiguous"
"""
# if torch.distributed.get_rank() == 0:
# print(w1.shape)
# print(hidden_states.shape)
original_shape = hidden_states.shape
# assert len(original_shape) == 2
num_tokens = hidden_states.shape[:-1].numel()
num_experts = w1.shape[0]
dtype = hidden_states.dtype
device = hidden_states.device
# assert dtype in [torch.float32, torch.float16, torch.bfloat16
# ], "Only float32, float16, and bfloat16 are supported"
if apply_router_weight_on_input:
assert (topk_weights.dim() == 2
), "`topk_weights` should be in shape (num_tokens, topk)"
_, topk = topk_weights.shape
assert (
topk == 1
), "Only support topk=1 when `apply_router_weight_on_input` is True"
hidden_states = hidden_states * topk_weights.to(hidden_states.dtype)
if expert_map is not None:
# Generate token indices and flatten
token_indices = (torch.arange(num_tokens,
device=device,
dtype=torch.int64).unsqueeze(1).expand(
-1, top_k).reshape(-1))
# Flatten token-to-expert mappings and map to local experts
weights_flat = topk_weights.view(-1)
experts_flat = topk_ids.view(-1)
local_experts_flat = expert_map[experts_flat]
# Filter valid token-expert pairs
mask = local_experts_flat != -1
filtered_weights = torch.where(
mask, weights_flat, torch.zeros_like(weights_flat)).to(dtype)
filtered_experts = torch.where(
mask, local_experts_flat,
torch.full_like(local_experts_flat,
num_experts)).to(topk_ids.dtype)
# Sort by local expert IDs
sort_indices = torch.argsort(filtered_experts.view(torch.float32))
sorted_token_indices = token_indices[sort_indices]
sorted_weights = filtered_weights[sort_indices]
# Compute token counts with minlength of num_experts
# This is equivalent to but faster than:
# >>> token_counts = torch.bincount(filtered_experts, minlength=num_experts)[:-1]
token_counts = torch.zeros(num_experts + 1,
device=device,
dtype=torch.int64)
ones = torch.ones_like(filtered_experts, dtype=torch.int64)
token_counts.scatter_add_(0, filtered_experts.to(torch.int64), ones)
token_counts = token_counts[:num_experts]
expert_tokens = torch.cumsum(token_counts, dim=0, dtype=torch.int64)
# Rearrange hidden_states
sorted_hidden_states = hidden_states[sorted_token_indices]
else:
row_idx_len = num_tokens * top_k
row_idx = (torch.arange(0,
row_idx_len,
dtype=torch.int32,
device=device).view(top_k, -1).permute(
1, 0).contiguous())
active_num = max_num_tokens if max_num_tokens is not None else num_tokens
sorted_hidden_states, expanded_row_idx, expanded_expert_idx = torch_npu.npu_moe_init_routing(
hidden_states,
row_idx=row_idx,
expert_idx=topk_ids,
active_num=active_num)
expert_tokens = torch_npu.npu_moe_compute_expert_tokens(
expanded_expert_idx, num_experts)
expert_tokens = expert_tokens.to(torch.int64)
w1 = w1.transpose(1, 2)
gate_up_out_list = torch_npu.npu_grouped_matmul(
x=[sorted_hidden_states],
weight=[w1],
split_item=2,
group_list_type=0,
group_type=0,
group_list=expert_tokens,
)
# TODO: Remove this in the future.
gate_up_out = torch.cat(gate_up_out_list, dim=0)
gate_up_out = torch_npu.npu_swiglu(gate_up_out)
w2 = w2.transpose(1, 2)
down_out_list = torch_npu.npu_grouped_matmul(
x=[gate_up_out],
weight=[w2],
split_item=2,
group_list_type=0,
group_type=0,
group_list=expert_tokens,
)
down_out_list = torch.cat(down_out_list, dim=0)
if expert_map is not None:
weighted_down_out = down_out_list * sorted_weights.unsqueeze(1)
final_hidden_states = torch.zeros(*original_shape,
device=hidden_states.device,
dtype=dtype)
# TODO: npu_grouped_matmul output random values at [num_valid_tokens:, ...]
# This created multiple NaN and index_add_ will mix them up which harms accuracy
# remove this mask and filter after it being fixed
num_valid_tokens = mask.sum()
valid_token_mask = torch.arange(
0, sorted_token_indices.shape[0],
device=device).unsqueeze(1) < num_valid_tokens
valid_output = torch.where(
valid_token_mask, weighted_down_out,
torch.zeros_like(weighted_down_out)).to(dtype)
final_hidden_states.index_add_(0, sorted_token_indices, valid_output)
else:
scales = torch.ones_like(
topk_weights) if apply_router_weight_on_input else topk_weights
# TODO: Reorder device memory 2 times here, replace the current
# implementation here when suitable operators become available.
final_hidden_states = torch_npu.npu_moe_finalize_routing(
down_out_list,
skip1=None,
skip2=None,
bias=None,
scales=scales,
expanded_src_to_dst_row=expanded_row_idx,
export_for_source_row=topk_ids,
)
return final_hidden_states
def native_grouped_topk(
topk_weights: torch.Tensor,
num_expert_group: Optional[int],
topk_group: Optional[int],
):
topk_group = 0 if topk_group is None else topk_group
num_expert_group = 0 if num_expert_group is None else num_expert_group
num_token = topk_weights.shape[0]
grouped_weights = topk_weights.view(num_token, num_expert_group,
-1).max(dim=-1).values
topk_group_indices = torch.topk(grouped_weights.to(torch.float32),
k=topk_group,
dim=-1,
sorted=False)[1]
topk_group_mask = torch.zeros_like(grouped_weights)
topk_group_mask.scatter_(1, topk_group_indices, 1)
topk_weight_mask = (topk_group_mask.unsqueeze(-1).expand(
num_token, num_expert_group,
topk_weights.shape[-1] // num_expert_group).reshape(num_token, -1))
topk_weights = topk_weights.masked_fill(~topk_weight_mask.bool(), 0.0)
return topk_weights
def select_experts(
hidden_states: torch.Tensor,
router_logits: torch.Tensor,
top_k: int,
use_grouped_topk: bool,
renormalize: bool,
topk_group: Optional[int] = None,
num_expert_group: Optional[int] = None,
custom_routing_function: Optional[Callable] = None,
scoring_func: str = "softmax",
e_score_correction_bias: Optional[torch.Tensor] = None,
global_num_experts: Optional[torch.Tensor] = None
) -> tuple[torch.Tensor, torch.Tensor]:
"""
Select top-k experts based on router logits.
Args:
hidden_states: Hidden states of shape (num_tokens, hidden_size).
router_logits: Router logits of shape (num_tokens, num_experts).
top_k: Number of experts to select.
use_grouped_topk: Whether to group experts before selecting top-k.
renormalize: Whether to renormalize the routing weights.
topk_group: Number of expert groups to select from.
num_expert_group: Number of experts in each group.
custom_routing_function: Custom routing function.
scoring_func: Scoring function to use.
e_score_correction_bias: Correction bias to apply to expert scores.
Returns:
topk_weights: Routing weights of shape (num_tokens, top_k).
topk_ids: Selected expert IDs of shape (num_tokens, top_k).
Raises:
ValueError: If an unsupported scoring function is provided.
"""
if scoring_func == "softmax":
# NOTE: vLLM use dtype=torch.float here
topk_weights = router_logits.softmax(dim=-1)
elif scoring_func == "sigmoid":
topk_weights = router_logits.sigmoid()
else:
raise ValueError(f"Unsupported scoring function: {scoring_func}")
if use_grouped_topk:
assert topk_group is not None
assert num_expert_group is not None
if e_score_correction_bias is not None:
# Store original scores before applying correction bias. We use biased
# scores for expert selection but original scores for routing weights
original_weights = topk_weights
topk_weights = topk_weights + e_score_correction_bias.unsqueeze(0)
# TODO: Change to npu_group_topk when the latest CANN and NNAL is available
# >>> torch_npu._npu_group_topk(topk_weights, group_num=num_expert_group, k=topk_group)
topk_weights = native_grouped_topk(topk_weights, num_expert_group,
topk_group)
# TODO bfloat16 is not supported in torch.topk with ge graph.
if e_score_correction_bias is not None:
topk_ids = torch.topk(topk_weights.to(torch.float32),
k=top_k,
dim=-1,
sorted=False)[1]
# Use original unbiased scores for the routing weights
topk_weights = original_weights.gather(1, topk_ids)
else:
topk_weights, topk_ids = torch.topk(topk_weights.to(torch.float32),
k=top_k,
dim=-1,
sorted=False)
elif custom_routing_function is None:
topk_weights, topk_ids = topk_weights.topk(top_k, dim=-1)
topk_weights = topk_weights.to(hidden_states.dtype)
else:
topk_weights, topk_ids = custom_routing_function(
hidden_states=hidden_states,
gating_output=router_logits,
topk=top_k,
renormalize=renormalize,
global_num_experts=global_num_experts)
# Required by npu_moe_init_routing
topk_ids = topk_ids.to(torch.int32)
return topk_weights, topk_ids
# Required by npu_moe_init_routing
topk_ids = topk_ids.to(torch.int32)
if renormalize:
topk_weights = topk_weights / topk_weights.sum(dim=-1, keepdim=True)
return topk_weights, topk_ids
class AscendUnquantizedFusedMoEMethod(UnquantizedFusedMoEMethod):
def __init__(self, moe: FusedMoEConfig = None):
super().__init__(moe=moe)
vllm_config = get_current_vllm_config()
self.ep_group = get_ep_group()
self.ep_size = self.ep_group.world_size
self.global_batch_size = vllm_config.scheduler_config.max_num_seqs
self.local_batch_size = self.global_batch_size // self.ep_size
self.max_model_len = vllm_config.model_config.max_model_len
ascend_config = get_ascend_config()
self.torchair_graph_enabled = ascend_config.torchair_graph_config.enabled
try:
device_group = self.ep_group.device_group
# TODO: Try local_rank = ep_group.rank_in_group
local_rank = torch.distributed.get_rank(group=device_group)
backend = device_group._get_backend(torch.device("npu"))
self.moe_all_to_all_group_name = backend.get_hccl_comm_name(
local_rank)
except AttributeError:
self.moe_all_to_all_group_name = None
def process_weights_after_loading(self, layer):
super(UnquantizedFusedMoEMethod,
self).process_weights_after_loading(layer)
layer.w13_weight = torch.nn.Parameter(self._maybe_pad_weight(
layer.w13_weight.data),
requires_grad=False)
layer.w2_weight = torch.nn.Parameter(self._maybe_pad_weight(
layer.w2_weight.data),
requires_grad=False)
def apply(
self,
layer: torch.nn.Module,
x: torch.Tensor,
router_logits: torch.Tensor,
top_k: int,
renormalize: bool,
use_grouped_topk: bool = False,
global_num_experts: int = -1,
expert_map: Optional[torch.Tensor] = None,
topk_group: Optional[int] = None,
num_expert_group: Optional[int] = None,
custom_routing_function: Optional[Callable] = None,
scoring_func: str = "softmax",
e_score_correction_bias: Optional[torch.Tensor] = None,
is_prefill: bool = False,
enable_force_load_balance: bool = False,
shared_experts: Optional[Any] = None,
**kwargs,
) -> torch.Tensor:
is_deepseek_v3_r1 = global_num_experts == 256
# NOTE: now npu_moe_gating_top_k can only support `group_count=256` pattern
if is_deepseek_v3_r1:
topk_weights, topk_ids, _ = torch_npu.npu_moe_gating_top_k(
router_logits,
k=top_k, # topk当前写8
bias=e_score_correction_bias,
k_group=topk_group, # fix: 4
group_count=num_expert_group, # fix 8
group_select_mode=1, # 0: group中的最大; 1: topk2.sum(fix)
renorm=0, # 0: softmax->topk(fix); 1: topk->softmax
norm_type=1, # 0: softmax; 1: sigmoid(fix)
# out_flag=False, # todo new api; 第三个输出是否输出
# y2_flag=False, # old api; 第三个输出是否输出
routed_scaling_factor=1,
eps=float(1e-20))
else:
topk_weights, topk_ids = select_experts(
hidden_states=x,
router_logits=router_logits,
top_k=top_k,
use_grouped_topk=use_grouped_topk,
renormalize=renormalize,
topk_group=topk_group,
num_expert_group=num_expert_group,
custom_routing_function=custom_routing_function,
scoring_func=scoring_func,
e_score_correction_bias=e_score_correction_bias,
)
topk_weights = topk_weights.to(x.dtype)
# this is a naive implementation for experts load balance so as
# to avoid accumulating too much tokens on a single rank.
# currently it is only activated when doing profile runs.
if enable_force_load_balance:
topk_ids = torch.randint_like(topk_ids, 0, global_num_experts)
fused_moe_state = get_fused_moe_state(self.ep_group.world_size,
is_prefill, is_deepseek_v3_r1)
if fused_moe_state == FusedMoEState.MC2:
return fused_experts_with_mc2(
hidden_states=x,
w1=layer.w13_weight,
w2=layer.w2_weight,
topk_weights=topk_weights,
topk_ids=topk_ids,
top_k=top_k,
expert_map=expert_map,
moe_all_to_all_group_name=self.moe_all_to_all_group_name,
shared_experts=shared_experts)
elif fused_moe_state in [
FusedMoEState.AllGather, FusedMoEState.NaiveMulticast
]:
return fused_experts(hidden_states=x,
w1=layer.w13_weight,
w2=layer.w2_weight,
topk_weights=topk_weights,
topk_ids=topk_ids,
top_k=top_k,
expert_map=expert_map)
elif MOE_ALL2ALL_BUFFER:
return fused_experts_with_all2all_buffer(
hidden_states=x,
w1=layer.w13_weight,
w2=layer.w2_weight,
topk_weights=topk_weights,
topk_ids=topk_ids,
top_k=top_k,
max_model_len=self.max_model_len,
global_batch_size=self.global_batch_size,
expert_map=expert_map,
ep_group=get_ep_group())
else:
return fused_experts_with_all2all(hidden_states=x,
w1=layer.w13_weight,
w2=layer.w2_weight,
topk_weights=topk_weights,
topk_ids=topk_ids,
top_k=top_k,
expert_map=expert_map,
ep_group=get_ep_group())
class AscendFusedMoE(FusedMoE):
# The moe_counter parameter is required during the initialization of EPLB
# to identify the current layer index within the MOE model.
moe_counter = -1
def __init__(
self,
num_experts: int, # Global number of experts
top_k: int,
hidden_size: int,
intermediate_size: int,
params_dtype: Optional[torch.dtype] = None,
reduce_results: bool = False,
renormalize: bool = True,
use_grouped_topk: bool = False,
num_expert_group: Optional[int] = None,
topk_group: Optional[int] = None,
quant_config: Optional[QuantizationConfig] = None,
tp_size: Optional[int] = None,
ep_size: Optional[int] = None,
dp_size: Optional[int] = None,
prefix: str = "",
custom_routing_function: Optional[Callable] = None,
scoring_func: str = "softmax",
e_score_correction_bias: Optional[torch.Tensor] = None,
activation: str = "silu",
apply_router_weight_on_input: bool = False,
):
# TODO: This could not initialize FusedMoE baseclass,
# fixme and make __init__() of AscendFusedMoE more clear
super(FusedMoE, self).__init__()
AscendFusedMoE.moe_counter += 1
self.moe_instance_id = AscendFusedMoE.moe_counter
if params_dtype is None:
params_dtype = torch.get_default_dtype()
vllm_config = get_current_vllm_config()
self.moe_parallel_config = FusedMoEParallelConfig.make(
tp_size_=(tp_size if tp_size is not None else
get_tensor_model_parallel_world_size()),
dp_size_=(dp_size
if dp_size is not None else get_dp_group().world_size),
vllm_parallel_config=vllm_config.parallel_config)
self.top_k = top_k
self.num_experts = num_experts
self.global_num_experts = num_experts
assert intermediate_size % self.tp_size == 0
self.intermediate_size_per_partition = intermediate_size // self.tp_size
self.reduce_results = reduce_results
self.renormalize = renormalize
self.use_grouped_topk = use_grouped_topk
if self.use_grouped_topk:
assert num_expert_group is not None and topk_group is not None
self.num_expert_group = num_expert_group
self.topk_group = topk_group
self.custom_routing_function = custom_routing_function
self.scoring_func = scoring_func
self.e_score_correction_bias = e_score_correction_bias
self.expert_map = None
self.activation = activation
self.log2phy = None
self.global_redundant_expert_num = 0
is_deepseek_v3_r1 = self.global_num_experts == 256
self.all_reduce_merge = get_all_reduce_merge_state(
self.moe_parallel_config.ep_size, is_deepseek_v3_r1)
ascend_config = get_ascend_config()
expert_map_path = ascend_config.expert_map_path
if expert_map_path and os.path.exists(expert_map_path):
# moe expert load balance
expert_load_balancer = ExpertLoadBalancer(expert_map_path,
self.global_num_experts)
self.local_num_experts, self.expert_map = \
expert_load_balancer.get_rank_placement_map(
self.moe_instance_id,
get_ep_group().rank_in_group)
self.log2phy = expert_load_balancer.get_rank_log2phy_map(
self.moe_instance_id,
get_ep_group().rank_in_group)
self.global_redundant_expert_num = \
expert_load_balancer.get_global_redundant_expert_num()
else:
# Create a tensor of size num_experts filled with -1
self.local_num_experts, self.expert_map = determine_expert_map(
self.ep_size,
get_ep_group().rank_in_group, self.global_num_experts)
self.torchair_graph_enabled = ascend_config.torchair_graph_config.enabled
self.enable_multistream_moe = \
ascend_config.torchair_graph_config.enable_multistream_moe
if self.scoring_func != "softmax" and not self.use_grouped_topk:
raise ValueError("Only softmax scoring function is supported for "
"non-grouped topk.")
moe = FusedMoEConfig.make(
num_experts=self.global_num_experts,
experts_per_token=top_k,
hidden_dim=hidden_size,
num_local_experts=self.local_num_experts,
moe_parallel_config=self.moe_parallel_config,
# TODO (bnell): this needs to be fixed for quantized types.
in_dtype=params_dtype,
quant_config=quant_config)
if quant_config is None:
self.quant_method = AscendUnquantizedFusedMoEMethod(moe)
else:
self.quant_method = quant_config.get_quant_method(self, prefix)
assert self.quant_method is not None
local_num_experts = torch.sum(self.expert_map != -1) \
if self.expert_map is not None else num_experts
moe_quant_params = {
"num_experts": local_num_experts,
"hidden_size": hidden_size,
"intermediate_size_per_partition":
self.intermediate_size_per_partition,
"params_dtype": params_dtype,
"weight_loader": self.weight_loader,
}
# need full intermediate size pre-sharding for WNA16 act order
if (self.quant_method.__class__.__name__
in ("GPTQMarlinMoEMethod", "CompressedTensorsWNA16MoEMethod")):
moe_quant_params["intermediate_size_full"] = intermediate_size
self.ep_group = get_ep_group()
# NOTE: self.tp_group is not expert_tp_group
self.tp_group = get_tp_group().device_group
self.quant_method.create_weights(layer=self, **moe_quant_params)
def naive_multicast(self, x: torch.Tensor,
cu_tokens_across_dp_cpu: torch.Tensor):
assert (len(x.shape) == 2)
buffer = torch.empty((cu_tokens_across_dp_cpu[-1], x.size(1)),
device=x.device,
dtype=x.dtype)
start = 0 if self.dp_rank == 0 else cu_tokens_across_dp_cpu[
self.dp_rank - 1]
end = cu_tokens_across_dp_cpu[self.dp_rank]
buffer[start:end, :].copy_(x)
for idx in range(self.dp_size):
start = 0 if idx == 0 else cu_tokens_across_dp_cpu[idx - 1]
end = cu_tokens_across_dp_cpu[idx]
get_dp_group().broadcast(buffer[start:end, :], idx)
return buffer
def forward(self,
hidden_states: torch.Tensor,
router_logits: torch.Tensor,
is_prefill: bool,
enable_force_load_balance: bool = False,
top_k: Optional[int] = None,
shared_experts: Optional[Any] = None,
replace_allreduce: bool = False):
assert self.quant_method is not None
if top_k:
real_top_k = top_k
else:
real_top_k = self.top_k
num_tokens, hidden_size = hidden_states.shape
is_deepseek_v3_r1 = self.global_num_experts == 256
fused_moe_state = get_fused_moe_state(self.moe_parallel_config.ep_size,
is_prefill, is_deepseek_v3_r1)
if shared_experts:
if not self.enable_multistream_moe or fused_moe_state != FusedMoEState.MC2:
# When all_reduce_merge is in progress, shared_experts does not do all_reduce in mlp, but waits until shared_experts+router_experts are completed before doing all_reduce
shared_hidden_states = shared_experts(hidden_states)
tp_size = get_tensor_model_parallel_world_size()
if (tp_size > 1 and fused_moe_state not in [
FusedMoEState.AllGather, FusedMoEState.AllGatherEP,
FusedMoEState.NaiveMulticast
] and not replace_allreduce):
if num_tokens < tp_size:
hidden_states = nn.functional.pad(
hidden_states, (0, 0, 0, tp_size - num_tokens))
router_logits = nn.functional.pad(
router_logits, (0, 0, 0, tp_size - num_tokens))
chunk_hidden_states = torch.tensor_split(hidden_states,
tp_size,
dim=0)
chunk_router_logits = torch.tensor_split(router_logits,
tp_size,
dim=0)
tp_rank = get_tensor_model_parallel_rank()
hidden_states = chunk_hidden_states[tp_rank]
router_logits = chunk_router_logits[tp_rank]
if self.dp_size > 1:
if fused_moe_state == FusedMoEState.AllGather:
# NOTE: When in torchair graph, it has been padded in model_runner_v1
if not self.torchair_graph_enabled:
attn_metadata = get_forward_context().attn_metadata
if attn_metadata is not None:
max_num_tokens_across_dp = attn_metadata.max_num_tokens_across_dp
if num_tokens < max_num_tokens_across_dp:
hidden_states = nn.functional.pad(
hidden_states,
(0, 0, 0,
max_num_tokens_across_dp - num_tokens))
router_logits = nn.functional.pad(
router_logits,
(0, 0, 0,
max_num_tokens_across_dp - num_tokens))
hidden_states = get_dp_group().all_gather(hidden_states, 0)
router_logits = get_dp_group().all_gather(router_logits, 0)
elif fused_moe_state == FusedMoEState.NaiveMulticast:
cu_tokens_across_dp_cpu = get_forward_context(
).dp_metadata.cu_tokens_across_dp_cpu
hidden_states = self.naive_multicast(hidden_states,
cu_tokens_across_dp_cpu)
router_logits = self.naive_multicast(router_logits,
cu_tokens_across_dp_cpu)
# Matrix multiply.
e_hidden_states = self.quant_method.apply(
layer=self,
x=hidden_states,
router_logits=router_logits,
top_k=real_top_k,
renormalize=self.renormalize,
use_grouped_topk=self.use_grouped_topk,
global_num_experts=self.global_num_experts,
expert_map=self.expert_map,
topk_group=self.topk_group,
num_expert_group=self.num_expert_group,
custom_routing_function=self.custom_routing_function,
scoring_func=self.scoring_func,
e_score_correction_bias=self.e_score_correction_bias,
is_prefill=is_prefill,
enable_force_load_balance=enable_force_load_balance,
log2phy=self.log2phy,
global_redundant_expert_num=self.global_redundant_expert_num,
shared_experts=shared_experts if self.torchair_graph_enabled
and self.enable_multistream_moe and not is_prefill else None,
)
if shared_experts:
if isinstance(e_hidden_states, tuple):
e_hidden_states, shared_hidden_states = e_hidden_states
if (tp_size > 1 and fused_moe_state not in [
FusedMoEState.AllGather, FusedMoEState.AllGatherEP,
FusedMoEState.NaiveMulticast
] and not replace_allreduce):
dist.all_gather(list(chunk_hidden_states), e_hidden_states,
self.tp_group)
final_hidden_states = torch.cat(chunk_hidden_states, dim=0)
if num_tokens < tp_size:
final_hidden_states = final_hidden_states[:num_tokens]
dispose_tensor(e_hidden_states)
elif self.dp_size > 1:
if fused_moe_state == FusedMoEState.NaiveMulticast:
start = 0 if self.dp_rank == 0 else cu_tokens_across_dp_cpu[
self.dp_rank - 1]
end = cu_tokens_across_dp_cpu[self.dp_rank]
final_hidden_states = get_dp_group().all_reduce(
e_hidden_states)
final_hidden_states = final_hidden_states[start:end, :]
dispose_tensor(e_hidden_states)
elif fused_moe_state == FusedMoEState.AllGather:
final_hidden_states = data_parallel_reduce_scatter(
e_hidden_states, dim=0)
final_hidden_states = final_hidden_states[:num_tokens]
dispose_tensor(e_hidden_states)
else:
final_hidden_states = e_hidden_states
if tp_size > 1 and not self.all_reduce_merge and fused_moe_state in [
FusedMoEState.AllGather, FusedMoEState.AllGatherEP,
FusedMoEState.NaiveMulticast
]:
final_hidden_states = tensor_model_parallel_all_reduce(
final_hidden_states)
if shared_experts:
return final_hidden_states, shared_hidden_states
else:
return final_hidden_states
# ----------------------------------------- TBO-related --------------------------------------------
def _forward_ms_fused_moe_comp(
self,
hidden_states: torch.Tensor,
router_logits: torch.Tensor,
is_prefill: bool,
real_top_k,
enable_force_load_balance: bool = False,
):
hidden_states = self.quant_method.apply(
layer=self,
x=hidden_states,
router_logits=router_logits,
top_k=real_top_k,
renormalize=self.renormalize,
use_grouped_topk=self.use_grouped_topk,
global_num_experts=self.global_num_experts,
expert_map=self.expert_map,
topk_group=self.topk_group,
num_expert_group=self.num_expert_group,
custom_routing_function=self.custom_routing_function,
scoring_func=self.scoring_func,
e_score_correction_bias=self.e_score_correction_bias,
is_prefill=is_prefill,
enable_force_load_balance=enable_force_load_balance)
return hidden_states