Files
vllm-ascend/vllm_ascend/models/deepseek_mtp.py
Li Wang c7446438a9 [1/N][CI] Move linting system to pre-commits hooks (#1256)
### What this PR does / why we need it?

Follow vllm-project/vllm lint way:
https://github.com/vllm-project/vllm/blob/main/.pre-commit-config.yaml

Enable pre-commit to avoid some low level error  AMAP.

This pr is one step of #1241, The purpose is make linting system more
clear and convenient, on this step, Mainly did the following things:
yapf, actionlint, ruff, typos, isort, mypy, png-lint, signoff-commit,
enforce-import-regex-instead-of-re.

TODO: 
- clang-format(check for csrc with google style)
need clean code, disable for now 
- pymarkdown
need clean code, disable for now 
- shellcheck
need clean code, disable for now 

### Does this PR introduce _any_ user-facing change?

Only developer UX change:

https://vllm-ascend--1256.org.readthedocs.build/en/1256/developer_guide/contributing.html#run-lint-locally

```
pip install -r requirements-lint.txt && pre-commit install
bash format.sh
```

### How was this patch tested?

CI passed with new added/existing test.

Co-authored-by: Yikun [yikunkero@gmail.com](mailto:yikunkero@gmail.com)
Co-authored-by: wangli
[wangli858794774@gmail.com](mailto:wangli858794774@gmail.com)
- vLLM version: v0.9.1
- vLLM main:
5358cce5ff

---------

Signed-off-by: wangli <wangli858794774@gmail.com>
2025-07-10 14:17:15 +08:00

202 lines
8.1 KiB
Python

#
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
# Adapted from vllm/model_executor/models/deepseek_mtp.py
# Copyright 2023 The vLLM team.
#
# This file is a part of the vllm-ascend project.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Optional
import torch
import torch.nn as nn
from transformers import PretrainedConfig
from vllm.attention.backends.abstract import AttentionMetadata
from vllm.config import CacheConfig, ModelConfig, VllmConfig
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.sampler import get_sampler
from vllm.model_executor.layers.vocab_parallel_embedding import \
VocabParallelEmbedding
from vllm.model_executor.models.deepseek_mtp import (
DeepSeekMTP, DeepSeekMultiTokenPredictor, DeepSeekMultiTokenPredictorLayer,
SharedHead)
from vllm.model_executor.models.utils import maybe_prefix
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.sequence import IntermediateTensors
from .deepseek_v2 import CustomDeepseekV2DecoderLayer
class CustomDeepSeekMultiTokenPredictorLayer(DeepSeekMultiTokenPredictorLayer):
def __init__(
self,
config: PretrainedConfig,
prefix: str,
model_config: ModelConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
) -> None:
nn.Module.__init__(self)
self.embed_tokens = VocabParallelEmbedding(
config.vocab_size,
config.hidden_size,
)
self.enorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.hnorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.eh_proj = nn.Linear(config.hidden_size * 2,
config.hidden_size,
bias=False)
self.shared_head = SharedHead(config=config, quant_config=quant_config)
self.mtp_block = CustomDeepseekV2DecoderLayer(config, prefix,
model_config,
cache_config,
quant_config)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: AttentionMetadata,
previous_hidden_states: torch.Tensor,
inputs_embeds: Optional[torch.Tensor] = None,
spec_step_index: int = 0,
) -> torch.Tensor:
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
assert inputs_embeds is not None
# masking inputs at position 0, as not needed by MTP
inputs_embeds = torch.where((positions == 0).unsqueeze(-1),
torch.zeros_like(inputs_embeds),
inputs_embeds)
inputs_embeds = self.enorm(inputs_embeds)
previous_hidden_states = self.hnorm(previous_hidden_states)
hidden_states = self.eh_proj(
torch.cat([inputs_embeds, previous_hidden_states], dim=-1))
hidden_states, residual = self.mtp_block(positions=positions,
hidden_states=hidden_states,
kv_cache=kv_cache,
attn_metadata=attn_metadata,
residual=None)
hidden_states = residual + hidden_states
return hidden_states
class CustomDeepSeekMultiTokenPredictor(DeepSeekMultiTokenPredictor):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
nn.Module.__init__(self)
config = vllm_config.model_config.hf_config
self.mtp_start_layer_idx = config.num_hidden_layers
self.num_mtp_layers = config.num_nextn_predict_layers
# to map the exact layer index from weights
self.layers = torch.nn.ModuleDict({
str(idx):
CustomDeepSeekMultiTokenPredictorLayer(
config,
f"{prefix}.layers.{idx}",
model_config=vllm_config.model_config,
cache_config=vllm_config.cache_config,
quant_config=vllm_config.quant_config,
)
for idx in range(self.mtp_start_layer_idx,
self.mtp_start_layer_idx + self.num_mtp_layers)
})
# Note: torch._dynamo.exc.Unsupported: builtin: str
self.layers_list = [
self.layers[str(idx)]
for idx in range(self.mtp_start_layer_idx,
self.mtp_start_layer_idx + self.num_mtp_layers)
]
self.logits_processor = LogitsProcessor(config.vocab_size)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: torch.Tensor,
attn_metadata: AttentionMetadata,
previous_hidden_states: torch.Tensor,
inputs_embeds: Optional[torch.Tensor] = None,
spec_step_idx: int = 0,
) -> torch.Tensor:
current_step_idx = (spec_step_idx % self.num_mtp_layers)
step_kv_cache = kv_caches[
current_step_idx] if kv_caches is not None else None
return self.layers_list[current_step_idx](
input_ids,
positions,
step_kv_cache,
attn_metadata,
previous_hidden_states,
inputs_embeds,
current_step_idx,
)
def compute_logits(
self,
hidden_states: torch.Tensor,
sampling_metadata: SamplingMetadata,
spec_step_idx: int = 0,
) -> torch.Tensor:
current_step_idx = (spec_step_idx % self.num_mtp_layers)
mtp_layer = self.layers_list[current_step_idx]
logits = self.logits_processor(mtp_layer.shared_head.head,
mtp_layer.shared_head(hidden_states),
sampling_metadata)
return logits
class CustomDeepSeekMTP(DeepSeekMTP):
# NOTE 1.The quantized MTP layer of deepseek on the NPU is not quantized;
# NOTE 2.The description file generated by the current msmodelslim tool does not have
# MTP layer info. Please manually add it and set the value to FLOAT.
packed_modules_mapping = {
"gate_up_proj": ["gate_proj", "up_proj"],
"experts":
["experts.0.gate_proj", "experts.0.up_proj", "experts.0.down_proj"]
}
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
nn.Module.__init__(self)
self.config = vllm_config.model_config.hf_config
self.model = CustomDeepSeekMultiTokenPredictor(vllm_config=vllm_config,
prefix=maybe_prefix(
prefix, "model"))
self.sampler = get_sampler()
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: Optional[List[torch.Tensor]] = None,
attn_metadata: Optional[AttentionMetadata] = None,
previous_hidden_states: Optional[torch.Tensor] = None,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
spec_step_idx: int = 0,
) -> torch.Tensor:
hidden_states = self.model(input_ids, positions, kv_caches,
attn_metadata, previous_hidden_states,
inputs_embeds, spec_step_idx)
return hidden_states