Files
vllm-ascend/vllm_ascend/platform.py
lbk-sys c611291661 【main】SP For Qwen3 MoE (#2209)
### What this PR does / why we need it?
Qwen3 MoE supports SP. In scenarios like AlltoAll, AlltoAllv, and MC2,
replacing AllReduce with Reduce-Scatter and AllGather achieves
computational benefits in norm operations while saving one AllGather
communication. This feature is enabled during the P-phase and delivers
notable gains in long-sequence scenarios (e.g., 16k–25k), with
performance improvements reaching 5%–10%.
### Does this PR introduce _any_ user-facing change?

### How was this patch tested?
``` 
compilation_config={
    "pass_config":{
        "enable_sequence_parallelism": True
    }
},
enable_expert_parallel=True,
```

- vLLM version: v0.10.0
- vLLM main:
9edd1db02b

---------

Signed-off-by: libaokui <libaokui@huawei.com>
Co-authored-by: libaokui <libaokui@huawei.com>
2025-08-07 09:15:49 +08:00

289 lines
11 KiB
Python

#
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This file is a part of the vllm-ascend project.
#
import gc
from datetime import timedelta
from typing import TYPE_CHECKING, Optional, Tuple
import torch
import vllm.envs as envs
from torch.distributed import ProcessGroup
from torch.distributed.distributed_c10d import PrefixStore
from vllm.logger import logger
from vllm.platforms import Platform, PlatformEnum
from vllm_ascend.ascend_config import (check_ascend_config, get_ascend_config,
init_ascend_config)
from vllm_ascend.utils import (ASCEND_QUATIZATION_METHOD, is_310p,
register_ascend_customop, update_aclgraph_sizes)
if TYPE_CHECKING:
from vllm.config import ModelConfig, VllmConfig
from vllm.utils import FlexibleArgumentParser
else:
ModelConfig = None
VllmConfig = None
FlexibleArgumentParser = None
class NPUPlatform(Platform):
_enum = PlatformEnum.OOT
device_name: str = "npu"
device_type: str = "npu"
simple_compile_backend: str = "eager" # Disable torch.compile()
ray_device_key: str = "NPU"
device_control_env_var: str = "ASCEND_RT_VISIBLE_DEVICES"
dispatch_key: str = "PrivateUse1"
supported_quantization: list[str] = [ASCEND_QUATIZATION_METHOD]
def is_sleep_mode_available(self) -> bool:
return True
@classmethod
def pre_register_and_update(cls,
parser: Optional[FlexibleArgumentParser] = None
) -> None:
# Adapt the global patch here.
from vllm_ascend.utils import adapt_patch
adapt_patch(is_global_patch=True)
# For online serving, "ascend" quantization method is not a choice natively,
# so we need to add "ascend" quantization method to quantization methods list
# and the user can enable quantization using "vllm serve --quantization ascend".
if parser is not None:
quant_action = parser._option_string_actions.get('--quantization')
if quant_action and hasattr(quant_action,
'choices') and quant_action.choices:
if ASCEND_QUATIZATION_METHOD not in quant_action.choices:
quant_action.choices.append(ASCEND_QUATIZATION_METHOD)
from vllm_ascend.quantization.quant_config import \
AscendQuantConfig # noqa: F401
@classmethod
def get_device_capability(cls, device_id: int = 0):
return None
@classmethod
def get_device_name(cls, device_id: int = 0) -> str:
return torch.npu.get_device_name(device_id)
@classmethod
def is_async_output_supported(cls, enforce_eager: Optional[bool]) -> bool:
return True
@classmethod
def inference_mode(cls):
return torch.inference_mode()
@classmethod
def set_device(cls, device: torch.device):
torch.npu.set_device(device)
@classmethod
def empty_cache(cls):
torch.npu.empty_cache()
@classmethod
def synchronize(cls):
torch.npu.synchronize()
@classmethod
def mem_get_info(cls) -> Tuple[int, int]:
return torch.npu.mem_get_info()
@classmethod
def clear_npu_memory(cls):
gc.collect()
torch.npu.empty_cache()
torch.npu.reset_peak_memory_stats()
@classmethod
def check_and_update_config(cls, vllm_config: VllmConfig) -> None:
if not envs.VLLM_USE_V1:
raise ValueError("vLLM Ascend does not support V0 engine.")
# initialize ascend config from vllm additional_config
ascend_config = init_ascend_config(vllm_config)
from vllm.config import CompilationLevel # noqa: E402
compilation_config = vllm_config.compilation_config
model_config = vllm_config.model_config
parallel_config = vllm_config.parallel_config
cache_config = vllm_config.cache_config
kv_cache_dtype = vllm_config.additional_config.get(
"kv_cache_dtype", None)
if kv_cache_dtype is not None:
vllm_config.cache_config.cache_dtype = kv_cache_dtype
if model_config is None:
logger.warning("Model config is missing. This may indicate "
"that we are running a test case")
enforce_eager = False
else:
enforce_eager = getattr(model_config, "enforce_eager", False)
check_ascend_config(vllm_config, enforce_eager)
if enforce_eager or compilation_config.level == CompilationLevel.NO_COMPILATION:
logger.info("Compilation disabled, using eager mode by default")
compilation_config.level = CompilationLevel.NO_COMPILATION
elif compilation_config.level != CompilationLevel.PIECEWISE:
logger.warning(
"NPU does not support %s compilation level. Setting level to NO_COMPILATION",
compilation_config.level)
compilation_config.level = CompilationLevel.NO_COMPILATION
elif ascend_config.torchair_graph_config.enabled:
logger.info(
"Torchair compilation enabled on NPU. Setting level to NO_COMPILATION"
)
compilation_config.level = CompilationLevel.NO_COMPILATION
elif parallel_config.distributed_executor_backend == "ray":
logger.warning(
"Ray distributed executor backend is not compatible with ACL Graph mode "
"right now. Setting level to NO_COMPILATION")
compilation_config.level = CompilationLevel.NO_COMPILATION
else:
logger.info(
"PIECEWISE compilation enabled on NPU. use_inductor not supported - "
"using only ACL Graph mode")
compilation_config.use_inductor = False
compilation_config.splitting_ops.extend(
["vllm.unified_ascend_attention_with_output"])
update_aclgraph_sizes(vllm_config)
if parallel_config and parallel_config.worker_cls == "auto":
if ascend_config.torchair_graph_config.enabled:
parallel_config.worker_cls = "vllm_ascend.torchair.torchair_worker.NPUTorchairWorker"
else:
parallel_config.worker_cls = "vllm_ascend.worker.worker_v1.NPUWorker"
if cache_config:
if cache_config.block_size is None:
cache_config.block_size = 128
if cache_config.enable_prefix_caching and cache_config.block_size != 128:
logger.warning(
"If prefix caching is enabled, block size must be set to 128."
)
cache_config.block_size = 128
# Activate custom ops for v1, except on 310P
if not is_310p():
compilation_config.custom_ops = ["all"]
# If ascend_scheduler_config is enabled,
# extents original scheduler_config to use AscendScheduler.
if ascend_config.ascend_scheduler_config.enabled:
from vllm_ascend.core.schedule_config import AscendSchedulerConfig
ascend_scheduler_config = AscendSchedulerConfig.initialize_from_config(
vllm_config.scheduler_config,
ascend_config.ascend_scheduler_config)
vllm_config.scheduler_config = ascend_scheduler_config
if compilation_config.pass_config.enable_sequence_parallelism:
if not parallel_config.enable_expert_parallel or vllm_config.model_config.hf_config.model_type != "qwen3_moe":
raise NotImplementedError(
"For better performance in Qwen3 MoE, SP only works exclusively with MC2, AllToAll, and AllToAllV."
)
# register Ascend CustomOp
register_ascend_customop()
@classmethod
def get_attn_backend_cls(cls, selected_backend, head_size, dtype,
kv_cache_dtype, block_size, use_v1, use_mla):
if not use_v1:
raise ValueError("vLLM Ascend does not support V0 engine.")
use_torchair = get_ascend_config().torchair_graph_config.enabled
if use_mla:
return "vllm_ascend.attention.mla_v1.AscendMLABackend"
elif use_torchair:
return "vllm_ascend.attention.attention_v1_torchair.AscendAttentionTorchairBackend"
else:
return "vllm_ascend.attention.attention_v1.AscendAttentionBackend"
@classmethod
def get_punica_wrapper(cls) -> str:
return "vllm_ascend.lora.punica_wrapper.punica_npu.PunicaWrapperNPU"
@classmethod
def get_current_memory_usage(cls,
device: Optional[torch.types.Device] = None
) -> float:
torch.npu.reset_peak_memory_stats(device)
return torch.npu.max_memory_allocated(device)
@classmethod
def get_device_communicator_cls(cls) -> str:
return "vllm_ascend.distributed.communicator.NPUCommunicator"
@classmethod
def is_pin_memory_available(cls):
return True
@classmethod
def supports_v1(cls, model_config: ModelConfig) -> bool:
"""Returns whether the current platform can support v1 for the supplied
model configuration.
"""
return True
@classmethod
def get_piecewise_backend_cls(cls) -> str:
"""
Get piecewise backend class for piecewise graph.
"""
return "vllm_ascend.compilation.piecewise_backend.NPUPiecewiseBackend" # noqa
@classmethod
def stateless_init_device_torch_dist_pg(
cls,
backend: str,
prefix_store: PrefixStore,
group_rank: int,
group_size: int,
timeout: timedelta,
) -> ProcessGroup:
from torch.distributed import is_hccl_available
from torch_npu._C._distributed_c10d import ProcessGroupHCCL
assert is_hccl_available()
pg: ProcessGroup = ProcessGroup(
prefix_store,
group_rank,
group_size,
)
backend_options = ProcessGroupHCCL.Options()
backend_options._timeout = timeout
backend_class = ProcessGroupHCCL(prefix_store, group_rank, group_size,
backend_options)
device = torch.device("npu")
# TODO(Yizhou): Like we mentioned above, _set_default_backend is not
# implemented in the 2.5.1 version of PyTorch. But we need to set it
# after the latest version is released.
# pg._set_default_backend(backend_type)
backend_class._set_sequence_number_for_group()
backend_type = ProcessGroup.BackendType.CUSTOM
pg._register_backend(device, backend_type, backend_class)
return pg