Files
vllm-ascend/vllm_ascend/distributed/device_communicators/pyhccl.py
Huazhong Ji c3d1a3782a Add pyhccl (#503)
This is the first step to support trl vllm serve on Ascend NPU
https://github.com/vllm-project/vllm-ascend/issues/459.
This PR can work properly only when
https://github.com/vllm-project/vllm/pull/16464 is merged into vLLM.

---------

Signed-off-by: hzji210@gmail.com <hzji210@gmail.com>
2025-04-17 14:57:52 +08:00

167 lines
6.3 KiB
Python

#
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
# This file is a part of the vllm-ascend project.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from typing import Optional, Union
import torch
import torch.distributed as dist
import torch_npu # noqa: F401
from torch.distributed import ProcessGroup, ReduceOp
from vllm.distributed.utils import StatelessProcessGroup
from vllm.logger import logger
from vllm_ascend.distributed.device_communicators.pyhccl_wrapper import (
HCCLLibrary, aclrtStream_t, buffer_type, hcclComm_t, hcclDataTypeEnum,
hcclRedOpTypeEnum, hcclUniqueId)
from vllm_ascend.utils import current_stream
class PyHcclCommunicator:
def __init__(
self,
group: Union[ProcessGroup, StatelessProcessGroup],
device: Union[int, str, torch.device],
library_path: Optional[str] = None,
):
"""
Args:
group: the process group to work on. If None, it will use the
default process group.
device: the device to bind the PyHcclCommunicator to. If None,
it will be bind to f"npu:{local_rank}".
library_path: the path to the HCCL library. If None, it will
use the default library path.
It is the caller's responsibility to make sure each communicator
is bind to a unique device.
"""
if not isinstance(group, StatelessProcessGroup):
assert dist.is_initialized()
assert dist.get_backend(group) != dist.Backend.HCCL, (
"PyHcclCommunicator should be attached to a non-HCCL group.")
# note: this rank is the rank in the group
self.rank = dist.get_rank(group)
self.world_size = dist.get_world_size(group)
else:
self.rank = group.rank
self.world_size = group.world_size
self.group = group
# if world_size == 1, no need to create communicator
if self.world_size == 1:
self.available = False
self.disabled = True
return
try:
self.hccl = HCCLLibrary(library_path)
except Exception:
# disable because of missing HCCL library
# e.g. in a non-NPU environment
self.available = False
self.disabled = True
return
self.available = True
self.disabled = False
logger.info("vLLM is using pyhccl")
if isinstance(device, int):
device = torch.device(f"npu:{device}")
elif isinstance(device, str):
device = torch.device(device)
# now `device` is a `torch.device` object
assert isinstance(device, torch.device)
self.device = device
if self.rank == 0:
# get the unique id from HCCL
with torch.npu.device(device):
self.unique_id = self.hccl.hcclGetUniqueId()
else:
# construct an empty unique id
self.unique_id = hcclUniqueId()
if not isinstance(group, StatelessProcessGroup):
tensor = torch.ByteTensor(list(self.unique_id.internal))
ranks = dist.get_process_group_ranks(group)
# arg `src` in `broadcast` is the global rank
dist.broadcast(tensor, src=ranks[0], group=group)
byte_list = tensor.tolist()
for i, byte in enumerate(byte_list):
self.unique_id.internal[i] = byte
else:
self.unique_id = group.broadcast_obj(self.unique_id, src=0)
# hccl communicator and stream will use this device
# `torch.npu.device` is a context manager that changes the
# current npu device to the specified one
with torch.npu.device(device):
self.comm: hcclComm_t = self.hccl.hcclCommInitRank(
self.world_size, self.unique_id, self.rank)
stream = current_stream()
# A small all_reduce for warmup.
data = torch.zeros(1, device=device)
self.all_reduce(data)
stream.synchronize()
del data
def all_reduce(self,
in_tensor: torch.Tensor,
op: ReduceOp = ReduceOp.SUM,
stream=None) -> torch.Tensor:
if self.disabled:
return None
# hccl communicator created on a specific device
# will only work on tensors on the same device
# otherwise it will cause "illegal memory access"
assert in_tensor.device == self.device, (
f"this hccl communicator is created to work on {self.device}, "
f"but the input tensor is on {in_tensor.device}")
out_tensor = torch.empty_like(in_tensor)
if stream is None:
stream = current_stream()
self.hccl.hcclAllReduce(buffer_type(in_tensor.data_ptr()),
buffer_type(out_tensor.data_ptr()),
in_tensor.numel(),
hcclDataTypeEnum.from_torch(in_tensor.dtype),
hcclRedOpTypeEnum.from_torch(op), self.comm,
aclrtStream_t(stream.npu_stream))
return out_tensor
def broadcast(self, tensor: torch.Tensor, src: int, stream=None):
if self.disabled:
return
assert tensor.device == self.device, (
f"this hccl communicator is created to work on {self.device}, "
f"but the input tensor is on {tensor.device}")
if stream is None:
stream = current_stream()
if src == self.rank:
buffer = buffer_type(tensor.data_ptr())
else:
buffer = buffer_type(tensor.data_ptr())
self.hccl.hcclBroadcast(buffer, tensor.numel(),
hcclDataTypeEnum.from_torch(tensor.dtype), src,
self.comm, aclrtStream_t(stream.npu_stream))