mirror of
https://github.com/vllm-project/vllm-ascend.git
synced 2025-10-20 13:43:53 +08:00
### What this PR does / why we need it?
Thanks to the PR https://github.com/vllm-project/vllm-ascend/pull/426
make vllm-ascend support the aclgraph inference to reduce the host
overhead. However, the capability of aclgraph strongly relies on the
functionality provided by `torch.compile`, which is the key feature
supported in torch 2.x . Therefore, capture custom op into aclgraph is
only possible when it can be recognize and captured by `torch.compile`.
In this PR, we register the meta implementation of current custom ops to
enable the fx graph capture. And by doing that, insert those custom ops
into aclgraph become a natural thing to the ascend runtime.
### Does this PR introduce _any_ user-facing change?
No user face change.
### How was this patch tested?
Tested in unittest, we will integrate the `rotary_embedding` op into a
small custom model and use `torch.compile` and aclgraph to capture and
replay it to verify its functionality.
- vLLM version: v0.10.0
- vLLM main:
1b99028069
---------
Signed-off-by: ganyi <pleaplusone.gy@gmail.com>
86 lines
3.2 KiB
C++
86 lines
3.2 KiB
C++
#include <torch/extension.h>
|
|
#include <torch/library.h>
|
|
#include <torch/version.h>
|
|
#include <torch_npu/csrc/core/npu/NPUStream.h>
|
|
#include <torch_npu/csrc/framework/OpCommand.h>
|
|
#include <torch_npu/csrc/npu/Module.h>
|
|
#include "utils.h"
|
|
/*
|
|
* How to write a meta implementation for a custom operator (meta kernel):
|
|
*
|
|
* Meta implementations are used for shape and dtype inference, tracing, and export.
|
|
* They do NOT perform any real computation or allocate device memory.
|
|
* Instead, they return empty tensors with the correct shapes, dtypes, and device types.
|
|
*
|
|
* Steps to write a meta implementation:
|
|
* 1. The function signature should match the operator's schema, but only use the arguments
|
|
* necessary to infer output shapes and dtypes.
|
|
* 2. Use input tensor shapes, dtypes, and any relevant arguments to compute the output shapes.
|
|
* 3. Return empty tensors (e.g., at::empty_symint, at::empty_like) with the correct shape and dtype.
|
|
* 4. Do NOT perform any real computation or data movement.
|
|
* 5. Register the meta implementation with the "Meta" dispatch key using TORCH_LIBRARY_IMPL or similar.
|
|
*
|
|
* Example:
|
|
* std::tuple<at::Tensor, at::Tensor> my_op_meta(
|
|
* at::Tensor &input, int64_t some_param) {
|
|
* // Infer output shape based on input and parameters
|
|
* auto out_shape = ...;
|
|
* at::Tensor out = at::empty_symint(out_shape, input.options());
|
|
* // Return empty tensor(s) with correct shape/dtype
|
|
* return {out, ...};
|
|
* }
|
|
*
|
|
* See below for real examples.
|
|
*/
|
|
|
|
namespace vllm_ascend {
|
|
namespace meta {
|
|
|
|
std::tuple<at::Tensor, at::Tensor> rotary_embedding_meta(
|
|
at::Tensor &positions,
|
|
at::Tensor &query,
|
|
at::Tensor &key,
|
|
int64_t head_size,
|
|
at::Tensor &cos_sin_cache,
|
|
bool is_neox) {
|
|
auto num_tokens = positions.sym_numel();
|
|
auto query_hidden_size = query.sym_numel() / num_tokens;
|
|
auto key_hidden_size = key.sym_numel() / num_tokens;
|
|
|
|
auto num_heads = query_hidden_size / head_size;
|
|
auto num_kv_heads = key_hidden_size / head_size;
|
|
at::Tensor query_dst = at::empty_symint({num_tokens, num_heads, head_size}, query.options());
|
|
at::Tensor key_dst = at::empty_symint({num_tokens, num_kv_heads, head_size}, key.options());
|
|
|
|
return {query_dst, key_dst};
|
|
}
|
|
|
|
std::tuple<at::Tensor, at::Tensor> get_masked_input_and_mask_meta(
|
|
at::Tensor &input,
|
|
const int64_t org_vocab_start_index,
|
|
const int64_t org_vocab_end_index,
|
|
const int64_t num_org_vocab_padding,
|
|
const int64_t added_vocab_start_index,
|
|
const int64_t added_vocab_end_index) {
|
|
|
|
at::Tensor masked_input = at::empty_like(input);
|
|
at::Tensor mask = at::empty_like(input, input.options().dtype(at::kBool));
|
|
|
|
return {masked_input, mask};
|
|
}
|
|
|
|
|
|
} // namespace meta
|
|
} // namespace vllm_ascend
|
|
|
|
namespace {
|
|
// Register the meta implementations of the custom kernels for symbolic tracing, this will also
|
|
// the custom kernel been captured into aclgraph
|
|
TORCH_LIBRARY_IMPL_EXPAND(_C, Meta, ops) {
|
|
// Rotary embedding meta implementation
|
|
ops.impl("rotary_embedding", &vllm_ascend::meta::rotary_embedding_meta);
|
|
// Masked input and mask meta implementation
|
|
ops.impl("get_masked_input_and_mask", &vllm_ascend::meta::get_masked_input_and_mask_meta);
|
|
|
|
}
|
|
} |