mirror of
https://github.com/vllm-project/vllm-ascend.git
synced 2025-10-20 21:53:54 +08:00
### What this PR does / why we need it?
Thanks to the PR https://github.com/vllm-project/vllm-ascend/pull/426
make vllm-ascend support the aclgraph inference to reduce the host
overhead. However, the capability of aclgraph strongly relies on the
functionality provided by `torch.compile`, which is the key feature
supported in torch 2.x . Therefore, capture custom op into aclgraph is
only possible when it can be recognize and captured by `torch.compile`.
In this PR, we register the meta implementation of current custom ops to
enable the fx graph capture. And by doing that, insert those custom ops
into aclgraph become a natural thing to the ascend runtime.
### Does this PR introduce _any_ user-facing change?
No user face change.
### How was this patch tested?
Tested in unittest, we will integrate the `rotary_embedding` op into a
small custom model and use `torch.compile` and aclgraph to capture and
replay it to verify its functionality.
- vLLM version: v0.10.0
- vLLM main:
1b99028069
---------
Signed-off-by: ganyi <pleaplusone.gy@gmail.com>
332 lines
16 KiB
C++
332 lines
16 KiB
C++
/*
|
|
* Copyright (c) Huawei Technologies Co., Ltd. 2024. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include <torch/extension.h>
|
|
#include <torch/library.h>
|
|
#include <torch/version.h>
|
|
#include <torch_npu/csrc/core/npu/NPUStream.h>
|
|
#include <torch_npu/csrc/framework/OpCommand.h>
|
|
#include <torch_npu/csrc/npu/Module.h>
|
|
#include <pybind11/pybind11.h>
|
|
#include "acl/acl.h"
|
|
#include "ops.h"
|
|
#include "utils.h"
|
|
|
|
namespace vllm_ascend {
|
|
|
|
AscendType get_dtype_from_torch(at::ScalarType scalarType)
|
|
{
|
|
if (scalarType == at::ScalarType::Float) {
|
|
return AscendType::FP32;
|
|
} else if (scalarType == at::ScalarType::BFloat16) {
|
|
return AscendType::BF16;
|
|
} else {
|
|
return AscendType::FP16;
|
|
}
|
|
}
|
|
|
|
std::tuple<at::Tensor, at::Tensor> rotary_embedding(at::Tensor &positions, at::Tensor &query, at::Tensor &key,
|
|
int64_t head_size, at::Tensor &cos_sin_cache, bool is_neox)
|
|
{
|
|
int32_t deviceId = 0;
|
|
int64_t num_tokens = positions.numel();
|
|
int positions_ndim = positions.dim();
|
|
TORCH_CHECK(
|
|
positions_ndim == 1 || positions_ndim == 2,
|
|
"positions must have shape [num_tokens] or [batch_size, seq_len]");
|
|
if (positions_ndim == 1) {
|
|
TORCH_CHECK(
|
|
query.size(0) == positions.size(0) && key.size(0) == positions.size(0),
|
|
"query, key and positions must have the same number of tokens");
|
|
}
|
|
if (positions_ndim == 2) {
|
|
TORCH_CHECK(
|
|
query.size(0) == positions.size(0) &&
|
|
key.size(0) == positions.size(0) &&
|
|
query.size(1) == positions.size(1) &&
|
|
key.size(1) == positions.size(1),
|
|
"query, key and positions must have the same batch_size and seq_len");
|
|
}
|
|
TORCH_CHECK(head_size % 32 == 0, "rotary_embedding: headSize should be divisible by 32");
|
|
int query_hidden_size = query.numel() / num_tokens;
|
|
int key_hidden_size = key.numel() / num_tokens;
|
|
TORCH_CHECK(query_hidden_size % head_size == 0);
|
|
TORCH_CHECK(key_hidden_size % head_size == 0);
|
|
TORCH_CHECK(is_neox == true, "rotary_embedding: neox=false is not supported as custom kernel in vllm-ascend");
|
|
|
|
// Make sure query and key have consistent number of heads
|
|
int num_heads = query_hidden_size / head_size;
|
|
int num_kv_heads = key_hidden_size / head_size;
|
|
TORCH_CHECK(num_heads % num_kv_heads == 0);
|
|
at::Tensor query_dst = at::empty({num_tokens, num_heads, head_size}, query.options());
|
|
at::Tensor key_dst = at::empty({num_tokens, num_kv_heads, head_size}, key.options());
|
|
|
|
int rot_dim = cos_sin_cache.size(1);
|
|
int seq_dim_idx = positions_ndim - 1;
|
|
int64_t *position_ids_ptr = positions.data_ptr<int64_t>();
|
|
void *query_dst_ptr = query_dst.data_ptr();
|
|
void *key_dst_ptr = key_dst.data_ptr();
|
|
void *query_ptr = query.data_ptr();
|
|
void *key_ptr = key.data_ptr();
|
|
void *cos_sin_cache_ptr = cos_sin_cache.data_ptr();
|
|
int64_t query_stride = query.stride(seq_dim_idx);
|
|
int64_t key_stride = key.stride(seq_dim_idx);
|
|
int64_t dst_query_stride = query_dst.stride(0);
|
|
int64_t dst_key_stride = key_dst.stride(0);
|
|
at::ScalarType scalar_type = query.scalar_type();
|
|
aclrtStream stream = c10_npu::getCurrentNPUStream().stream();
|
|
at_npu::native::OpCommand cmd;
|
|
cmd.Name("rotary_embedding");
|
|
cmd.SetCustomHandler([scalar_type, is_neox, num_tokens, stream, position_ids_ptr, query_dst_ptr, key_dst_ptr,
|
|
query_ptr, key_ptr, cos_sin_cache_ptr, rot_dim, query_stride, key_stride,
|
|
dst_query_stride, dst_key_stride, num_heads, num_kv_heads, head_size]() -> int {
|
|
auto dtype_num = get_dtype_from_torch(scalar_type);
|
|
int device_id = 0;
|
|
int64_t aiv_num = 0;
|
|
TORCH_CHECK(aclGetDeviceCapability(device_id, ACL_DEVICE_INFO_VECTOR_CORE_NUM, &aiv_num) == ACL_SUCCESS);
|
|
uint32_t loop_cnt = (num_tokens + aiv_num - 1) / aiv_num;
|
|
rotary_embedding_impl(dtype_num, is_neox, stream, position_ids_ptr, query_dst_ptr, key_dst_ptr, query_ptr,
|
|
key_ptr, cos_sin_cache_ptr, rot_dim, query_stride, key_stride, dst_query_stride,
|
|
dst_key_stride, num_heads, num_kv_heads, head_size, num_tokens, loop_cnt, aiv_num);
|
|
return 0;
|
|
});
|
|
cmd.Run();
|
|
return {query_dst, key_dst};
|
|
}
|
|
|
|
std::tuple<at::Tensor, at::Tensor> get_masked_input_and_mask(
|
|
at::Tensor &input,
|
|
const int64_t org_vocab_start_index,
|
|
const int64_t org_vocab_end_index,
|
|
const int64_t num_org_vocab_padding,
|
|
const int64_t added_vocab_start_index,
|
|
const int64_t added_vocab_end_index)
|
|
/*
|
|
https://github.com/vllm-project/vllm/blob/main/vllm/model_executor/layers/vocab_parallel_embedding.py#L161-L198
|
|
Embedding parallelized in the vocabulary dimension.
|
|
|
|
Adapted from torch.nn.Embedding, note that we pad the vocabulary size to
|
|
make sure it is divisible by the number of model parallel GPUs.
|
|
|
|
In order to support various loading methods, we ensure that LoRA-added
|
|
embeddings are always at the end of TP-sharded tensors. In other words,
|
|
we shard base embeddings and LoRA embeddings separately (both padded),
|
|
and place them in the same tensor.
|
|
In this example, we will have the original vocab size = 1010,
|
|
added vocab size = 16 and padding to 64. Therefore, the total
|
|
vocab size with padding will be 1088 (because we first pad 1010 to
|
|
1024, add 16, and then pad to 1088).
|
|
Therefore, the tensor format looks like the following:
|
|
TP1, rank 0 (no sharding):
|
|
|< --------BASE-------- >|< -BASE PADDING-- >|< -----LORA------ >|< -LORA PADDING-- >|
|
|
corresponding token_id: | 0 | 1 | ... | 1009 | -1 | ... | -1 | 1010 | ... | 1015 | -1 | ... | -1 |
|
|
index: | 0 | 1 | ... | 1009 | 1010 | ... | 1023 | 1024 | ... | 1039 | 1040 | ... | 1087 |
|
|
|
|
TP2, rank 0:
|
|
|< --------------------BASE--------------------- >|< -----LORA------ >|< -LORA PADDING- >|
|
|
corresponding token_id: | 0 | 1 | 2 | ... | 497 | 498 | ... | 511 | 1000 | ... | 1015 | -1 | ... | -1 |
|
|
index: | 0 | 1 | 2 | ... | 497 | 498 | ... | 511 | 512 | ... | 527 | 520 | ... | 543 |
|
|
TP2, rank 1:
|
|
|< -----------BASE----------- >|< -BASE PADDING- >|< -----------LORA PADDING----------- >|
|
|
corresponding token_id: | 512 | 513 | 514 | ... | 1009 | -1 | ... | -1 | -1 | ... | -1 | -1 | ... | -1 |
|
|
index: | 0 | 1 | 2 | ... | 497 | 498 | ... | 511 | 512 | ... | 519 | 520 | ... | 543 |
|
|
Parameters:
|
|
org_vocab_start_index //base embeddings start
|
|
org_vocab_end_index //base embeddings end
|
|
num_org_vocab_padding //base embeddings padding
|
|
added_vocab_start_index //LoRA embeddings start
|
|
added_vocab_end_index //LoRA embeddings end
|
|
*/
|
|
{
|
|
// Input validation
|
|
TORCH_CHECK(input.dim() >= 1, "input must have at least 1 dimension");
|
|
TORCH_CHECK(org_vocab_start_index >= 0, "org_vocab_start_index must be non-negative");
|
|
TORCH_CHECK(org_vocab_end_index >= org_vocab_start_index, "org_vocab_end_index must be greater than org_vocab_start_index");
|
|
TORCH_CHECK(num_org_vocab_padding >= 0, "num_org_vocab_padding must be non-negative");
|
|
TORCH_CHECK(added_vocab_start_index >= org_vocab_end_index, "added_vocab_start_index must be greater than org_vocab_end_index");
|
|
TORCH_CHECK(added_vocab_end_index >= added_vocab_start_index, "added_vocab_end_index must be greater than added_vocab_start_index");
|
|
|
|
// Get total number of elements
|
|
int64_t size = input.numel();
|
|
|
|
// Create output tensors
|
|
at::Tensor masked_input = at::empty_like(input);
|
|
at::Tensor mask = at::empty_like(input).to(at::kBool);
|
|
|
|
// Get data pointers
|
|
void *input_ptr = input.data_ptr();
|
|
void *masked_input_ptr = masked_input.data_ptr();
|
|
void *mask_ptr = mask.data_ptr();
|
|
|
|
// Get current stream
|
|
aclrtStream stream = c10_npu::getCurrentNPUStream().stream();
|
|
|
|
// Get scalar type
|
|
at::ScalarType scalar_type = input.scalar_type();
|
|
|
|
// Create and configure OpCommand
|
|
at_npu::native::OpCommand cmd;
|
|
cmd.Name("get_masked_input_and_mask");
|
|
cmd.SetCustomHandler([scalar_type, size, stream,
|
|
input_ptr, masked_input_ptr, mask_ptr,
|
|
org_vocab_start_index, org_vocab_end_index,
|
|
num_org_vocab_padding, added_vocab_start_index,
|
|
added_vocab_end_index]() -> int {
|
|
int device_id = 0;
|
|
int64_t aiv_num = 0;
|
|
TORCH_CHECK(aclGetDeviceCapability(device_id, ACL_DEVICE_INFO_VECTOR_CORE_NUM, &aiv_num) == ACL_SUCCESS);
|
|
uint32_t loop_cnt = (size + aiv_num - 1) / aiv_num;
|
|
|
|
// Call implementation
|
|
get_masked_input_and_mask_impl(
|
|
stream,
|
|
input_ptr,
|
|
masked_input_ptr,
|
|
mask_ptr,
|
|
org_vocab_start_index,
|
|
org_vocab_end_index,
|
|
num_org_vocab_padding,
|
|
added_vocab_start_index,
|
|
added_vocab_end_index,
|
|
size,
|
|
loop_cnt,
|
|
aiv_num);
|
|
|
|
return 0;
|
|
});
|
|
cmd.Run();
|
|
return {masked_input, mask};
|
|
}
|
|
|
|
void bgmv_shrink(at::Tensor &x, at::Tensor &weight, at::Tensor &indices, at::Tensor &y, double scale)
|
|
{
|
|
at::ScalarType scalar_type = x.scalar_type();
|
|
TORCH_CHECK(scalar_type == torch::kHalf || scalar_type == torch::kBFloat16, "only support half and bf16");
|
|
TORCH_CHECK(x.dim() == 2, "x should be [batch_size, hidden_in]");
|
|
TORCH_CHECK(weight.dim() == 3 || weight.dim() == 4,
|
|
"weight should be [num_loras, hidden_out, hidden_in] or [num_loras, 1, hidden_out, hidden_in]");
|
|
TORCH_CHECK(y.dim() == 2, "y should be [batch_size, hidden_out]");
|
|
TORCH_CHECK(indices.dim() == 1, "indices should be [batch_size]");
|
|
TORCH_CHECK(x.size(0) == y.size(0) && x.size(0) == indices.size(0),
|
|
"the first dimension of x, y, indices should be same");
|
|
TORCH_CHECK(x.size(1) > y.size(1), "hidden in should be greater than hidden out");
|
|
void* x_ptr = x.data_ptr();
|
|
void* weight_ptr = weight.data_ptr();
|
|
void* indices_ptr = indices.data_ptr();
|
|
void* y_ptr = y.data_ptr();
|
|
int batch_size = x.size(0);
|
|
int input_hidden_token = x.size(1);
|
|
uint32_t lora_rank = y.size(1);
|
|
float scale_f = static_cast<float>(scale);
|
|
aclrtStream stream = c10_npu::getCurrentNPUStream().stream();
|
|
at_npu::native::OpCommand cmd;
|
|
cmd.Name("bgmv_shrink");
|
|
cmd.SetCustomHandler([scalar_type, stream, x_ptr, weight_ptr, indices_ptr, y_ptr, batch_size, input_hidden_token,
|
|
lora_rank, scale_f]() -> int {
|
|
auto dtype = get_dtype_from_torch(scalar_type);
|
|
int device_id = 0;
|
|
int64_t aiv_num = 0;
|
|
TORCH_CHECK(aclGetDeviceCapability(device_id, ACL_DEVICE_INFO_VECTOR_CORE_NUM, &aiv_num) == ACL_SUCCESS);
|
|
int num_tokens_per_core = (batch_size + aiv_num - 1) / aiv_num;
|
|
TORCH_CHECK("num_tokens_per_core != 0", "num_tokens_per_core should not be 0");
|
|
bgmv_shrink_impl(dtype, stream, x_ptr, weight_ptr, indices_ptr, y_ptr, batch_size, num_tokens_per_core,
|
|
input_hidden_token, lora_rank, scale_f);
|
|
return 0;
|
|
});
|
|
cmd.Run();
|
|
return;
|
|
}
|
|
|
|
at::Tensor bgmv_expand(at::Tensor &x, at::Tensor &weight, at::Tensor &indices, at::Tensor &y,
|
|
int64_t slice_offset, int64_t slice_size)
|
|
{
|
|
at::ScalarType scalar_type = y.scalar_type();
|
|
TORCH_CHECK(scalar_type == torch::kHalf || scalar_type == torch::kBFloat16, "only support half and bf16");
|
|
TORCH_CHECK(x.dim() == 2, "x should be [batch_size, hidden_in]");
|
|
TORCH_CHECK(weight.dim() == 3 || weight.dim() == 4,
|
|
"weight should be [num_loras, hidden_out, hidden_in] or [num_loras, 1, hidden_out, hidden_in]");
|
|
TORCH_CHECK(y.dim() == 2, "y should be [batch_size, hidden_out]");
|
|
TORCH_CHECK(indices.dim() == 1, "indices should be [batch_size]");
|
|
TORCH_CHECK(x.size(0) == y.size(0) && x.size(0) == indices.size(0),
|
|
"the first dimension of x, y, indices should be same");
|
|
TORCH_CHECK(x.size(1) <= slice_size, "hidden in should be smaller than hidden out");
|
|
TORCH_CHECK(slice_offset >= 0, "slice offset should be no smaller than 0");
|
|
TORCH_CHECK((slice_size + slice_offset) <= y.size(1),
|
|
"slice_size + slice_offset should be smaller than the second dimension of y")
|
|
|
|
at::Tensor y_out = y;
|
|
void* x_ptr = x.data_ptr();
|
|
void* weight_ptr = weight.data_ptr();
|
|
void* indices_ptr = indices.data_ptr();
|
|
void* y_ptr = y.data_ptr();
|
|
void* y_out_ptr = y_out.data_ptr();
|
|
int batch_size = x.size(0);
|
|
int lora_rank = x.size(1);
|
|
int output_full_dim = y.size(1);
|
|
aclrtStream stream = c10_npu::getCurrentNPUStream().stream();
|
|
at_npu::native::OpCommand cmd;
|
|
cmd.Name("bgmv_expand");
|
|
cmd.SetCustomHandler([scalar_type, stream, x_ptr, weight_ptr, indices_ptr, y_ptr, y_out_ptr, batch_size, lora_rank,
|
|
slice_offset, slice_size, output_full_dim]() -> int {
|
|
auto dtype = get_dtype_from_torch(scalar_type);
|
|
int device_id = 0;
|
|
int64_t aiv_num = 0;
|
|
TORCH_CHECK(aclGetDeviceCapability(device_id, ACL_DEVICE_INFO_VECTOR_CORE_NUM, &aiv_num) == ACL_SUCCESS);
|
|
int num_tokens_per_core = (batch_size + aiv_num - 1) / aiv_num;
|
|
TORCH_CHECK("num_tokens_per_core != 0", "num_tokens_per_core should not be 0");
|
|
bgmv_expand_impl(dtype, stream, x_ptr, weight_ptr, indices_ptr, y_ptr, y_out_ptr, batch_size,
|
|
num_tokens_per_core, lora_rank, slice_size, slice_offset, output_full_dim);
|
|
return 0;
|
|
});
|
|
cmd.Run();
|
|
return y_out;
|
|
}
|
|
} // namespace vllm_ascend
|
|
|
|
TORCH_LIBRARY_EXPAND(_C, ops)
|
|
{
|
|
// vLLM-Ascend custom ops
|
|
ops.def("weak_ref_tensor(Tensor input) -> Tensor");
|
|
ops.impl("weak_ref_tensor", torch::kPrivateUse1, &vllm_ascend::weak_ref_tensor);
|
|
|
|
// Rotary embedding
|
|
// Apply GPT-NeoX style rotary embedding to query and key.
|
|
ops.def(
|
|
"rotary_embedding(Tensor positions, Tensor! query,"
|
|
" Tensor! key, int head_size,"
|
|
" Tensor cos_sin_cache, bool is_neox) -> (Tensor query, Tensor key)");
|
|
ops.impl("rotary_embedding", torch::kPrivateUse1, &vllm_ascend::rotary_embedding);
|
|
|
|
ops.def(
|
|
"get_masked_input_and_mask(Tensor input, "
|
|
" int org_vocab_start_index, "
|
|
" int org_vocab_end_index, "
|
|
" int num_org_vocab_padding, "
|
|
" int added_vocab_start_index, "
|
|
" int added_vocab_end_index) -> (Tensor masked_input, Tensor mask)");
|
|
ops.impl("get_masked_input_and_mask", torch::kPrivateUse1, &vllm_ascend::get_masked_input_and_mask);
|
|
|
|
ops.def("bgmv_shrink(Tensor! x, Tensor! weight, Tensor! indices, Tensor! y, float scale) -> ()");
|
|
ops.impl("bgmv_shrink", torch::kPrivateUse1, &vllm_ascend::bgmv_shrink);
|
|
|
|
ops.def(
|
|
"bgmv_expand(Tensor! x, Tensor! weight, Tensor! indices, Tensor! y,"
|
|
" int slice_offset, int slice_size) -> Tensor");
|
|
ops.impl("bgmv_expand", torch::kPrivateUse1, &vllm_ascend::bgmv_expand);
|
|
}
|
|
|
|
REGISTER_EXTENSION(_C)
|