Files
vllm-ascend/vllm_ascend/spec_decode/mtp_proposer.py
zhaozx-cn bf87606932 [Feat] Shared expert dp for deepseek and deepseek_mtp (#3495)
### What this PR does / why we need it?
shared expert dp for deepseek and deepseek_mtp, could be combined with
sp to improve performance.

### How was this patch tested?

- vLLM version: v0.11.0rc3
- vLLM main: https://github.com/vllm-project/vllm/commit/v0.11.0

---------

Signed-off-by: zhaozx-cn <zhaozx2116@163.com>
Co-authored-by: realliujiaxu <realliujiaxu@163.com>
2025-10-17 15:06:37 +08:00

666 lines
31 KiB
Python

import types
import torch
import torch.nn as nn
import torchair
from torchair import patch_for_hcom
from vllm.attention.layer import Attention
from vllm.config import (VllmConfig, get_layers_from_vllm_config,
set_current_vllm_config)
from vllm.forward_context import BatchDescriptor, get_forward_context
from vllm.model_executor.model_loader import get_model_loader
from vllm.model_executor.model_loader.utils import (
process_weights_after_loading, set_default_torch_dtype)
from vllm.v1.core.sched.output import SchedulerOutput
from vllm.v1.sample.metadata import SamplingMetadata
from vllm.v1.spec_decode.metadata import SpecDecodeMetadata
from vllm_ascend.ascend_config import get_ascend_config
from vllm_ascend.ascend_forward_context import set_ascend_forward_context
from vllm_ascend.attention.utils import AscendCommonAttentionMetadata
from vllm_ascend.models.deepseek_mtp import CustomDeepSeekMTP
from vllm_ascend.spec_decode.interface import Proposer, SpecDcodeType
from vllm_ascend.torchair.models.torchair_deepseek_mtp import \
TorchairDeepSeekMTP
from vllm_ascend.torchair.utils import (TORCHAIR_CACHE_DIR,
TorchairCommonAttentionMetadata)
from vllm_ascend.utils import ProfileExecuteDuration, lmhead_tp_enable
PADDING_SLOT_ID = -1
class MtpProposer(Proposer):
def __init__(
self,
vllm_config: VllmConfig,
device,
runner,
):
self.name = SpecDcodeType.MTP
self.vllm_config = vllm_config
self.device = device
self.runner = runner
self.num_speculative_tokens = vllm_config.speculative_config.num_speculative_tokens
# persistent buffers for graph
self.input_ids = torch.zeros(self.runner.max_num_tokens,
dtype=torch.int32,
device=self.device)
self.positions = torch.zeros(self.runner.max_num_tokens,
dtype=torch.int64,
device=self.device)
self.hidden_states = torch.zeros(
(self.runner.max_num_tokens,
vllm_config.model_config.get_hidden_size()),
dtype=self.runner.dtype,
device=self.device)
self.torchair_compiled_model = None # type: ignore
self.torchair_compiled_models = {} # type: ignore
self.torchair_graph_enabled = get_ascend_config(
).torchair_graph_config.enabled
self.enable_shared_expert_dp = get_ascend_config(
).enable_shared_expert_dp
# We need +1 here because the arange is used to set query_start_loc,
# which has one more element than batch_size.
self.arange = torch.arange(vllm_config.scheduler_config.max_num_seqs +
1,
device=self.runner.device,
dtype=torch.int32)
self.use_sparse = hasattr(vllm_config.model_config.hf_config,
"index_topk")
def load_model(self, model) -> None:
loader = get_model_loader(self.vllm_config.load_config)
target_attn_layer_names = set(
get_layers_from_vllm_config(self.vllm_config, Attention).keys())
draft_model_config = \
self.vllm_config.speculative_config.draft_model_config
target_device = self.vllm_config.device_config.device
with set_default_torch_dtype(
draft_model_config.dtype), set_current_vllm_config(
self.vllm_config):
if self.torchair_graph_enabled:
self.model = TorchairDeepSeekMTP(
vllm_config=self.vllm_config).to(target_device)
else:
self.model = CustomDeepSeekMTP(
vllm_config=self.vllm_config).to(target_device)
draft_attn_layer_names = (
get_layers_from_vllm_config(self.vllm_config, Attention).keys() -
target_attn_layer_names)
assert len(draft_attn_layer_names) == 1
self.attn_layer_name = list(draft_attn_layer_names)
self.model.load_weights(
loader.get_all_weights(
self.vllm_config.speculative_config.draft_model_config,
self.model))
process_weights_after_loading(self.model, draft_model_config,
target_device)
@torch.inference_mode()
def dummy_run(self,
num_tokens: int,
with_prefill: bool = False,
skip_attn: bool = False,
num_reqs: int = 0,
num_tokens_across_dp=None) -> None:
if not self.torchair_graph_enabled:
# TODO: adapt enable_dbo later
(num_tokens, num_tokens_across_dp, with_prefill,
_) = self.runner._sync_metadata_across_dp(num_tokens,
with_prefill, False)
moe_comm_type = self.runner._select_moe_comm_method(
num_tokens, with_prefill)
is_running_torchair = self.torchair_graph_enabled and \
not with_prefill
if is_running_torchair:
skip_attn = False
if skip_attn:
attn_metadata = None
else:
common_attn_metadata = TorchairCommonAttentionMetadata(
num_reqs=num_reqs,
num_actual_tokens=1,
actual_seq_lengths_q=self.runner.actual_seq_lengths_q,
attn_mask=self.runner.attn_mask,
spec_attn_mask=self.runner.spec_attn_mask,
decode_token_per_req=self.runner.decode_token_per_req,
)
attn_metadata = self.runner.attn_metadata_builder.build_torchair_graph_dummy(
common_attn_metadata)
input_ids = self.input_ids[:num_tokens]
positions = self.positions[:num_tokens]
previous_hidden_states = self.hidden_states[:num_tokens]
for _ in range(self.num_speculative_tokens):
with set_ascend_forward_context(
attn_metadata,
self.vllm_config,
num_tokens=num_tokens,
with_prefill=with_prefill,
num_tokens_across_dp=num_tokens_across_dp,
reserved_mc2_mask=self.runner.reserved_mc2_mask,
moe_comm_type=moe_comm_type,
in_profile_run=self.runner.in_profile_run,
num_actual_tokens=0):
if is_running_torchair:
assert attn_metadata is not None
torch._dynamo.mark_static(input_ids)
torch._dynamo.mark_static(positions)
torch._dynamo.mark_static(previous_hidden_states)
torch._dynamo.mark_static(attn_metadata.decode.block_table)
torch._dynamo.mark_static(
attn_metadata.decode.input_positions)
if hasattr(attn_metadata.decode, "sin"):
torch._dynamo.mark_static(attn_metadata.decode.sin)
torch._dynamo.mark_static(attn_metadata.decode.cos)
torch._dynamo.mark_static(get_forward_context().mc2_mask)
torch._dynamo.mark_static(attn_metadata.slot_mapping)
torch._dynamo.mark_static(attn_metadata.decode.attn_mask)
torchair_compiled_model = self._get_torchair_lazy_compiled_model(
num_tokens)
torchair_compiled_model(
input_ids=input_ids,
positions=positions,
previous_hidden_states=previous_hidden_states,
inputs_embeds=None,
intermediate_tensors=None,
attn_metadata=attn_metadata,
kv_caches=self.runner.kv_caches[-1:],
spec_step_idx=0)
else:
self.model(input_ids=input_ids,
positions=positions,
previous_hidden_states=previous_hidden_states)
if with_prefill:
break
def generate_token_ids(self,
valid_sampled_token_ids: list[list[int]],
sampling_metadata: SamplingMetadata = None,
scheduler_output: SchedulerOutput = None,
spec_decode_metadata: SpecDecodeMetadata = None,
positions: torch.Tensor = None,
num_scheduled_tokens: int = 0,
hidden_states: torch.Tensor = None,
attn_metadata=None,
aux_hidden_states: torch.Tensor = None):
if attn_metadata is not None and isinstance(attn_metadata, dict):
attn_metadata = attn_metadata['model.layers.0.self_attn.attn']
next_token_ids: list[int] = []
for i, token_ids in enumerate(valid_sampled_token_ids):
if token_ids:
# Common case.
next_token_id = token_ids[-1]
else:
# Partial prefill (rare case).
# Get the next token id from the request state.
req_id = self.runner.input_batch.req_ids[i]
req_state = self.runner.requests[req_id]
seq_len = (req_state.num_computed_tokens +
scheduler_output.num_scheduled_tokens[req_id])
next_token_id = req_state.get_token_id(seq_len)
next_token_ids.append(next_token_id)
next_token_ids = torch.tensor(next_token_ids,
dtype=torch.int32,
device=self.device)
accepted_token_indices = None
if spec_decode_metadata is None:
# input_ids can be None for multimodal models.
target_token_ids = self.runner.input_ids[:num_scheduled_tokens]
target_positions = positions[:num_scheduled_tokens]
target_hidden_states = hidden_states[:num_scheduled_tokens]
target_slot_mapping = attn_metadata.slot_mapping
cu_num_tokens = attn_metadata.query_start_loc
else:
# TODO(woosuk): Refactor this.
num_draft_tokens = spec_decode_metadata.num_draft_tokens
num_rejected_tokens = [
n + 1 - len(valid_sampled_token_ids[i]) if n > 0 else 0
for i, n in enumerate(num_draft_tokens)
]
num_rejected_tokens = torch.tensor(
num_rejected_tokens,
dtype=torch.int32,
device=self.device,
)
cu_num_tokens, accepted_token_indices, target_token_ids, \
target_positions, target_hidden_states, target_slot_mapping = self._prepare_inputs(
attn_metadata.query_start_loc,
num_rejected_tokens,
self.runner.input_ids[:num_scheduled_tokens],
positions[:num_scheduled_tokens],
hidden_states[:num_scheduled_tokens],
attn_metadata.slot_mapping[:num_scheduled_tokens],
is_torchair_graph=self.runner._build_drafter_prepare_inputs_torchair_param(),
)
draft_token_ids = self._propose(
target_token_ids=target_token_ids,
target_positions=target_positions,
target_hidden_states=target_hidden_states,
target_slot_mapping=target_slot_mapping,
next_token_ids=next_token_ids,
cu_num_tokens=cu_num_tokens,
block_table=attn_metadata.block_tables,
sampling_metadata=sampling_metadata,
token_indices=accepted_token_indices)
spec_token_ids = draft_token_ids.tolist()
return spec_token_ids
def _prepare_inputs(
self,
# [batch_size + 1]
cu_target_query_lens: torch.Tensor,
# [batch_size]
num_rejected_tokens: torch.Tensor,
token_ids: torch.Tensor,
positions: torch.Tensor,
hidden_states: torch.Tensor,
slot_mapping: torch.Tensor,
is_torchair_graph: bool = False
) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor,
torch.Tensor, torch.Tensor]:
# cu_target_query_lens: [0, a, a + b, a + b + c]
# num_rejected_tokens: [n1, n2, n3]
# num_tokens_per_req: [a - n1, b - n2, c - n3]
# cu_num_tokens: [0, a - n1, a + b - n1 - n2, a + b + c - n1 - n2 - n3]
# token_indices: [0, 1, ..., a - n1 - 1,
# a, a + 1, ..., a + b - n2 - 1,
# a + b, a + b + 1, ..., a + b + c - n3 - 1]
# [0, a, a + b, a + b + c] -> [a, b, c]
query_len_per_req = (cu_target_query_lens[1:] -
cu_target_query_lens[:-1])
# [a, b, c] -> [a - n1, b - n2, c - n3]
num_tokens_per_req = query_len_per_req - num_rejected_tokens
if is_torchair_graph:
cu_num_tokens = cu_target_query_lens
relative_index = query_len_per_req - num_rejected_tokens - 1
token_indices = cu_num_tokens[:-1] + relative_index
# the seq len of each bath is padded to 1+num_speculative_tokens, thus input is same as the main model
target_token_ids = token_ids
target_positions = positions
target_hidden_states = hidden_states
target_slot_mapping = slot_mapping
else:
cu_num_tokens = torch.empty_like(cu_target_query_lens)
torch.cumsum(num_tokens_per_req, dim=0, out=cu_num_tokens[1:])
cu_num_tokens[0] = 0
# FIXME(woosuk): Avoid synchronization.
num_tokens = cu_num_tokens[-1].item()
token_indices = torch.zeros(
num_tokens,
dtype=torch.int32,
device=cu_num_tokens.device,
)
BLOCK_SIZE = 1024
self._prepare_input_kernel(
token_indices,
cu_target_query_lens,
cu_num_tokens,
block_size=BLOCK_SIZE,
)
target_token_ids = token_ids[token_indices]
target_positions = positions[token_indices]
target_hidden_states = hidden_states[token_indices]
target_slot_mapping = slot_mapping[token_indices]
return cu_num_tokens, token_indices, target_token_ids, target_positions, target_hidden_states, target_slot_mapping
def _propose(
self,
# [num_tokens]
target_token_ids: torch.Tensor,
# [num_tokens]
target_positions: torch.Tensor,
# [num_tokens, hidden_size]
target_hidden_states: torch.Tensor,
# [num_tokens]
target_slot_mapping: torch.Tensor,
# [batch_size]
next_token_ids: torch.Tensor,
# [batch_size + 1] starting with 0
cu_num_tokens: torch.Tensor,
# [batch_size, max_num_blocks_per_req]
block_table: torch.Tensor,
sampling_metadata: SamplingMetadata,
token_indices=None) -> torch.Tensor:
num_tokens = target_token_ids.shape[0]
batch_size = next_token_ids.shape[0]
last_token_indices = cu_num_tokens[1:] - 1
# Shift the input ids by one token.
# E.g., [a1, b1, b2, c1, c2, c3] -> [b1, b2, c1, c2, c3, c3]
self.input_ids[:num_tokens - 1] = target_token_ids[1:]
# Replace the last token with the next token.
# E.g., [b1, b2, c1, c2, c3, c3] -> [a2, b2, b3, c2, c3, c4]
if token_indices is not None and self.torchair_graph_enabled:
last_token_indices = token_indices
self.input_ids[last_token_indices] = next_token_ids
query_lens = cu_num_tokens[1:] - cu_num_tokens[:-1]
max_query_len = query_lens.max().item()
# FIXME: reorder_batch() needs to be called before build()
# because fields of attn_metadata_builder needs to be updated.
# However, currently reorder_batch() takes input_batch and
# scheduler_output as arguments, we should probably refactor
# the method to use new data structures which are independent
# from input_batch and scheduler_output.
# self.runner.attn_metadata_builder.reorder_batch(
# input_batch=self.runner.input_batch,
# scheduler_output=self.runner.scheduler_output,
# )
is_running_torchair = self.torchair_graph_enabled and \
not self.runner.with_prefill
if is_running_torchair:
# Torchair graph mode, padding is same as the main model
num_input_tokens = self.runner.graph_pad_size
elif (self.runner.use_aclgraph
and num_tokens <= self.runner.aclgraph_batch_sizes[-1]):
# Acl graph mode, add padding to the batch size
num_input_tokens = self.vllm_config.pad_for_cudagraph(num_tokens)
else:
# Eager mode, no padding needed
num_input_tokens = num_tokens
seq_lens = target_positions[last_token_indices] + 1
seq_lens = seq_lens.int()
common_attn_metadata = AscendCommonAttentionMetadata(
query_start_loc=cu_num_tokens[:batch_size + 1],
query_start_loc_cpu=cu_num_tokens[:batch_size + 1].cpu(),
seq_lens_cpu=seq_lens.cpu(),
num_reqs=batch_size,
num_actual_tokens=num_tokens,
max_query_len=max_query_len,
actual_seq_lengths_q=self.runner.actual_seq_lengths_q,
block_table_tensor=self.runner.input_batch.block_table[0].
get_device_tensor(),
slot_mapping=target_slot_mapping,
positions=target_positions,
attn_mask=self.runner.attn_mask,
spec_attn_mask=self.runner.spec_attn_mask,
attn_state=self.runner.attn_state,
graph_pad_size=self.runner.graph_pad_size,
decode_token_per_req=self.runner.decode_token_per_req,
num_computed_tokens_cpu=None,
seq_lens=None)
if not self.torchair_graph_enabled:
builder = self.runner.attn_groups[0][0].get_metadata_builder()
attn_metadata_mtp = builder.build(0, common_attn_metadata,
self.runner.get_model())
attn_metadata = {}
for layer_name in self.attn_layer_name:
attn_metadata[layer_name] = attn_metadata_mtp
else:
attn_metadata = self.runner.attn_metadata_builder.build(
0, common_attn_metadata, self.runner.get_model())
self.positions[:num_tokens] = target_positions
self.hidden_states[:num_tokens] = target_hidden_states
if not self.torchair_graph_enabled:
# torch mode need to update num_tokens_across_dp
# TODO: adapt enable_dbo later
(num_input_tokens, num_tokens_across_dp, with_prefill,
_) = self.runner._sync_metadata_across_dp(
num_input_tokens, self.runner.with_prefill, False)
else:
# torchair mode can reuse self.runner.num_tokens_across_dp
num_tokens_across_dp = self.runner.num_tokens_across_dp
with_prefill = self.runner.with_prefill
moe_comm_type = self.runner._select_moe_comm_method(
num_input_tokens, with_prefill)
batch_descriptor = BatchDescriptor(num_tokens=num_input_tokens,
uniform_decode=False)
aclgraph_runtime_mode, batch_descriptor = \
self.runner.aclgraph_dispatcher.dispatch(batch_descriptor)
for step in range(self.num_speculative_tokens):
with set_ascend_forward_context(
attn_metadata,
self.vllm_config,
num_tokens=num_input_tokens,
with_prefill=with_prefill,
num_tokens_across_dp=num_tokens_across_dp,
reserved_mc2_mask=self.runner.reserved_mc2_mask,
moe_comm_type=moe_comm_type,
aclgraph_runtime_mode=aclgraph_runtime_mode,
in_profile_run=self.runner.in_profile_run,
num_actual_tokens=num_tokens):
with ProfileExecuteDuration().capture_async('mtp_forward'):
model_kwargs = {}
model_kwargs["attn_metadata"] = attn_metadata
if self.torchair_graph_enabled:
model_kwargs["kv_caches"] = self.runner.kv_caches[-1:]
if is_running_torchair:
torchair_compiled_model = self._get_torchair_lazy_compiled_model(
num_input_tokens)
hidden_states = torchair_compiled_model(
input_ids=self.input_ids[:num_input_tokens],
positions=self.positions[:num_input_tokens],
previous_hidden_states=self.
hidden_states[:num_input_tokens],
inputs_embeds=None,
intermediate_tensors=None,
spec_step_idx=0,
**model_kwargs)
else:
hidden_states = self.model(
input_ids=self.input_ids[:num_input_tokens],
positions=self.positions[:num_input_tokens],
previous_hidden_states=self.
hidden_states[:num_input_tokens],
kv_caches=self.runner.kv_caches[-1:])
num_indices = last_token_indices.shape[0]
if lmhead_tp_enable():
if not self.runner.with_prefill:
max_num_reqs_across_dp = num_input_tokens
else:
max_num_reqs_across_dp = self.vllm_config.scheduler_config.max_num_seqs
last_token_indices = nn.functional.pad(
last_token_indices,
(0, max_num_reqs_across_dp - num_indices))
sample_hidden_states = hidden_states[last_token_indices]
logits = self.model.compute_logits(sample_hidden_states, None)
if lmhead_tp_enable() and num_indices < logits.shape[0]:
logits = logits[:num_indices]
draft_token_ids = logits.argmax(dim=-1)
if self.num_speculative_tokens == 1:
# [batch_size, 1]
return draft_token_ids.view(-1, 1)
if step == 0:
draft_token_ids_list = [draft_token_ids]
else:
draft_token_ids_list.append(draft_token_ids)
# prepare next mtp inputs
# mtp>1: prefill skip or decode skip last loop
if with_prefill and self.torchair_graph_enabled:
for _ in range(self.num_speculative_tokens - 1):
draft_token_ids_list.append(draft_token_ids)
if step == self.num_speculative_tokens - 1 or with_prefill:
break
if not self.torchair_graph_enabled:
attn_metadata_i = attn_metadata[self.attn_layer_name[0]]
else:
attn_metadata_i = attn_metadata
if step == 0:
positions = target_positions[last_token_indices]
hidden_states = hidden_states[last_token_indices]
slot_mapping = attn_metadata_i.slot_mapping[last_token_indices]
attn_metadata_i.slot_mapping.fill_(-1)
attn_metadata_i.query_start_loc = self.arange[:batch_size + 1]
last_token_indices = self.arange[:batch_size]
if attn_metadata_i.num_decode_tokens != 0:
attn_metadata_i.num_decode_tokens = batch_size
if is_running_torchair:
attn_metadata_i.num_actual_tokens = batch_size
attn_metadata_i.query_lens = [1] * batch_size
input_ids = draft_token_ids_list[-1].int()
positions += 1
if not self.torchair_graph_enabled:
attn_metadata_i.decode.actual_seq_lengths_q = attn_metadata_i.query_start_loc[
1:batch_size + 1].tolist()
attn_metadata_i.decode.cos = builder.cos_cache[
positions].unsqueeze(1).unsqueeze(2)
attn_metadata_i.decode.sin = builder.sin_cache[
positions].unsqueeze(1).unsqueeze(2)
# NOTE(woosuk): We should handle the case where the draft model
# generates tokens beyond the max model length. Since it is complex
# to remove such requests from the batch, we keep them in the batch
# but adjust the position ids and slot mappings to avoid the
# out-of-range access during the model execution. The draft tokens
# generated with this adjustment should be ignored.
exceeds_max_model_len = positions >= self.runner.model_config.max_model_len
# Mask out the position ids that exceed the max model length.
# Otherwise, we may get out-of-range error in RoPE.
clamped_positions = torch.where(exceeds_max_model_len, 0,
positions)
# Increment the sequence lengths.
attn_metadata_i.seq_lens[:batch_size] += 1
# For the requests that exceed the max model length, we set the
# sequence length to 1 to minimize their overheads in attention.
exceeds_max_model_len_cpu = exceeds_max_model_len.to(
attn_metadata_i.seq_lens.device, non_blocking=True)
attn_metadata_i.seq_lens[:batch_size].masked_fill_(
exceeds_max_model_len_cpu, 1)
# Mask out the slot mappings that exceed the max model length.
# Otherwise, the KV cache will be inadvertently updated with the
# padding tokens.
slot_mapping += 1
slot_mapping.masked_fill_(exceeds_max_model_len, PADDING_SLOT_ID)
# copy inputs to buffer for cudagraph
self.input_ids[:batch_size] = input_ids
self.positions[:batch_size] = clamped_positions
self.hidden_states[:hidden_states.shape[0]] = hidden_states
attn_metadata_i.slot_mapping[:batch_size] = slot_mapping
if attn_metadata_i.prefill is not None:
attn_metadata_i.prefill.seq_lens = attn_metadata_i.seq_lens
attn_metadata_i.prefill.seq_lens_list = attn_metadata_i.prefill.seq_lens.tolist(
)
attn_metadata_i.prefill.context_lens = attn_metadata_i.seq_lens
attn_metadata_i.prefill.input_positions = self.positions[:
num_input_tokens]
attn_metadata_i.prefill.max_seq_lens += 1
attn_metadata_i.prefill.max_seq_lens = min(
attn_metadata_i.prefill.max_seq_lens,
self.runner.model_config.max_model_len)
if attn_metadata_i.decode is not None:
attn_metadata_i.decode.seq_lens = attn_metadata_i.seq_lens
attn_metadata_i.decode.seq_lens_list = attn_metadata_i.decode.seq_lens.tolist(
)
attn_metadata_i.decode.input_positions = self.positions[:
num_input_tokens]
attn_metadata_i.decode.max_seq_lens += 1
attn_metadata_i.decode.max_seq_lens = min(
attn_metadata_i.decode.max_seq_lens,
self.runner.model_config.max_model_len)
# mtp>1: [batch_size, k]
draft_token_ids = torch.stack(draft_token_ids_list, dim=1)
return draft_token_ids
def _get_torchair_lazy_compiled_model(self, batch_size: int):
if batch_size < 0 or batch_size > self.runner.torchair_graph_batch_sizes[
-1]:
raise ValueError(
f"Bad graph batch size:{batch_size}! max_graph_batch_sizes:{self.runner.torchair_graph_batch_sizes[-1]}"
)
compiled_model = self.torchair_compiled_models.get(
batch_size
) if self.runner.use_cached_npu_graph else self.torchair_compiled_model
if compiled_model:
return compiled_model
patch_for_hcom()
config = torchair.CompilerConfig()
config.experimental_config.frozen_parameter = True
config.experimental_config.tiling_schedule_optimize = True
config.experimental_config.enable_view_optimize = \
get_ascend_config().torchair_graph_config.enable_view_optimize
torch.npu.set_compile_mode(jit_compile=False)
if not self.runner.use_cached_npu_graph:
npu_backend = torchair.get_npu_backend(compiler_config=config)
self.torchair_compiled_model = torch.compile(
self.model,
dynamic=not self.use_sparse,
fullgraph=True,
backend=npu_backend)
return self.torchair_compiled_model
else:
# Generate a new forward proxy code object to prevent the invalidation of
# compilation cache caused by dynamo retracing
forward_proxy_name = f"{self.model.__class__.__name__}_forward_with_batch_size_{batch_size}"
forward_fn = self.model.forward
code = forward_fn.__code__
# Mark code object with a new proxy name
modified_code = code.replace(co_name=forward_proxy_name, )
modified_func = types.FunctionType(modified_code,
forward_fn.__globals__,
name=forward_proxy_name,
argdefs=forward_fn.__defaults__)
self.model.__dict__[forward_proxy_name] = modified_func.__get__(
self.model, nn.Module)
self.torchair_compiled_models[
batch_size] = torchair.inference.cache_compile(
self.model.__dict__[forward_proxy_name],
dynamic=not self.use_sparse,
fullgraph=True,
cache_dir=TORCHAIR_CACHE_DIR,
config=config,
ge_cache=False)
return self.torchair_compiled_models[batch_size]
# TODO Using torch instead of triton may result in poor performance
def _prepare_input_kernel(self, out_ptr: torch.Tensor,
cu_query_lens: torch.Tensor,
cu_num_tokens: torch.Tensor, block_size: int):
device = cu_query_lens.device
dtype = out_ptr.dtype
offsets = torch.arange(block_size, device=device, dtype=dtype)
start_pos = cu_num_tokens[:-1]
end_pos = cu_num_tokens[1:]
num_tokens = end_pos - start_pos
global_indices = (start_pos.view(-1, 1) + offsets.view(1, -1))
values = (cu_query_lens[:-1].view(-1, 1) + offsets.view(1, -1))
mask = (offsets.view(1, -1) < num_tokens.view(-1, 1))
global_indices_flat = global_indices[mask]
values_flat = values[mask]
out_ptr[global_indices_flat] = values_flat