Files
vllm-ascend/benchmarks/scripts/perf_result_template.md
Li Wang bdfb065b5d [1/2/N] Enable pymarkdown and python __init__ for lint system (#2011)
### What this PR does / why we need it?
1. Enable pymarkdown check
2. Enable python `__init__.py` check for vllm and vllm-ascend
3. Make clean code

### How was this patch tested?


- vLLM version: v0.9.2
- vLLM main:
29c6fbe58c

---------

Signed-off-by: wangli <wangli858794774@gmail.com>
2025-07-25 22:16:10 +08:00

1.8 KiB

Online serving tests

  • Input length: randomly sample 200 prompts from ShareGPT and lmarena-ai/vision-arena-bench-v0.1(multi-modal) dataset (with fixed random seed).
  • Output length: the corresponding output length of these 200 prompts.
  • Batch size: dynamically determined by vllm and the arrival pattern of the requests.
  • Average QPS (query per second): 1, 4, 16 and inf. QPS = inf means all requests come at once. For other QPS values, the arrival time of each query is determined using a random Poisson process (with fixed random seed).
  • Models: Qwen/Qwen3-8B, Qwen/Qwen2.5-VL-7B-Instruct
  • Evaluation metrics: throughput, TTFT (median time to the first token ), ITL (median inter-token latency) TPOT(median time per output token).

{serving_tests_markdown_table}

Offline tests

Latency tests

  • Input length: 32 tokens.
  • Output length: 128 tokens.
  • Batch size: fixed (8).
  • Models: Qwen/Qwen3-8B, Qwen/Qwen2.5-VL-7B-Instruct
  • Evaluation metrics: end-to-end latency.

{latency_tests_markdown_table}

Throughput tests

  • Input length: randomly sample 200 prompts from ShareGPT and lmarena-ai/vision-arena-bench-v0.1(multi-modal) dataset (with fixed random seed).
  • Output length: the corresponding output length of these 200 prompts.
  • Batch size: dynamically determined by vllm to achieve maximum throughput.
  • Models: Qwen/Qwen3-8B, Qwen/Qwen2.5-VL-7B-Instruct
  • Evaluation metrics: throughput.

{throughput_tests_markdown_table}