mirror of
https://github.com/vllm-project/vllm-ascend.git
synced 2025-10-20 13:43:53 +08:00
### What this PR does / why we need it?
support qwen25 vl w8a8 quantization
### Does this PR introduce _any_ user-facing change?
N/A
### How was this patch tested?
- vLLM version: v0.10.1.1
- vLLM main:
62f66be1f7
---------
Signed-off-by: lijiaojiao <lijiaojiao990304@163.com>
Co-authored-by: lijiaojiao <lijiaojiao990304@163.com>
549 lines
23 KiB
Python
549 lines
23 KiB
Python
#
|
|
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
|
|
# Adapted from vllm/model_executor/models/qwen2_5_vl.py
|
|
# Copyright 2023 The vLLM team.
|
|
#
|
|
# This file is a part of the vllm-ascend project.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from functools import partial
|
|
from typing import Callable, Iterable, Optional, Set, Tuple, Union
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import torch_npu
|
|
from einops import rearrange
|
|
from transformers.models.qwen2_5_vl.configuration_qwen2_5_vl import (
|
|
Qwen2_5_VLConfig, Qwen2_5_VLVisionConfig)
|
|
from vllm.config import VllmConfig
|
|
from vllm.distributed import parallel_state
|
|
from vllm.distributed import utils as dist_utils
|
|
from vllm.model_executor.layers.activation import get_act_and_mul_fn
|
|
from vllm.model_executor.layers.layernorm import RMSNorm
|
|
from vllm.model_executor.layers.quantization import QuantizationConfig
|
|
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
|
from vllm.model_executor.models.qwen2_5_vl import (
|
|
Qwen2_5_VisionAttention, Qwen2_5_VisionBlock, Qwen2_5_VisionPatchEmbed,
|
|
Qwen2_5_VisionRotaryEmbedding, Qwen2_5_VisionTransformer,
|
|
Qwen2_5_VLDummyInputsBuilder, Qwen2_5_VLForConditionalGeneration,
|
|
Qwen2_5_VLMultiModalProcessor, Qwen2_5_VLProcessingInfo)
|
|
from vllm.model_executor.models.utils import maybe_prefix
|
|
from vllm.multimodal import MULTIMODAL_REGISTRY
|
|
|
|
MIN_PAD_SIZE = 64 # min_size to pad weight
|
|
MAX_PAD_SIZE = 128 # max_size to pad weight
|
|
|
|
|
|
class AscendQwen2_5_VisionAttention(Qwen2_5_VisionAttention):
|
|
|
|
def __init__(
|
|
self,
|
|
embed_dim: int,
|
|
num_heads: int,
|
|
projection_size: int,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__(
|
|
embed_dim,
|
|
num_heads,
|
|
projection_size,
|
|
quant_config,
|
|
prefix,
|
|
)
|
|
self.embed_dim = embed_dim
|
|
self.hidden_size_per_attention_head = dist_utils.divide(
|
|
projection_size, num_heads)
|
|
self.origin_hidden_size_per_attention_head = self.hidden_size_per_attention_head
|
|
if self.hidden_size_per_attention_head > MIN_PAD_SIZE and self.hidden_size_per_attention_head < MAX_PAD_SIZE:
|
|
self.hidden_size_per_attention_head = MAX_PAD_SIZE
|
|
|
|
def split_qkv(self, qkv: torch.Tensor) -> tuple[torch.Tensor, ...]:
|
|
# [s, b, 3 * head * head_dim]
|
|
seq_len, bs, _ = qkv.shape
|
|
|
|
# [s, b, 3 * head * head_dim] -> 3 * [s, b, head * head_dim]
|
|
q, k, v = qkv.chunk(3, dim=2)
|
|
|
|
# 3 * [s, b, head * head_dim] -> 3 * [s, b, head, head_dim]
|
|
new_shape = (seq_len, bs, self.num_attention_heads_per_partition,
|
|
self.hidden_size_per_attention_head)
|
|
q, k, v = (x.view(*new_shape) for x in (q, k, v))
|
|
return q, k, v
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
cu_seqlens: torch.Tensor,
|
|
cos: torch.Tensor,
|
|
sin: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
# [s, b, c] --> [s, b, head * 3 * head_dim]
|
|
x, _ = self.qkv(x)
|
|
|
|
# [s, b, 3 * head * head_dim] -> 3 * [s, b, head, head_dim]
|
|
q, k, v = self.split_qkv(x)
|
|
batch_size = q.shape[1]
|
|
|
|
q, k, v = (rearrange(x, "s b ... -> b s ...").contiguous()
|
|
for x in (q, k, v))
|
|
q = torch_npu.npu_rotary_mul(q, cos, sin)
|
|
k = torch_npu.npu_rotary_mul(k, cos, sin)
|
|
|
|
q, k, v = [
|
|
rearrange(x, "b s h d -> (b s) h d").contiguous()
|
|
for x in (q, k, v)
|
|
]
|
|
|
|
context_layer = torch.empty_like(q)
|
|
|
|
# operator requires pta version >= 2.5.1
|
|
torch_npu._npu_flash_attention_unpad(
|
|
query=q,
|
|
key=k,
|
|
value=v,
|
|
seq_len=cu_seqlens,
|
|
scale_value=self.origin_hidden_size_per_attention_head**-0.5,
|
|
num_heads=self.num_attention_heads_per_partition,
|
|
num_kv_heads=self.num_attention_heads_per_partition,
|
|
out=context_layer)
|
|
|
|
context_layer = rearrange(context_layer,
|
|
"(b s) h d -> s b (h d)",
|
|
b=batch_size).contiguous()
|
|
|
|
output, _ = self.proj(context_layer)
|
|
return output
|
|
|
|
|
|
class AscendQwen2_5_VisionBlock(Qwen2_5_VisionBlock):
|
|
|
|
def __init__(
|
|
self,
|
|
dim: int,
|
|
num_heads: int,
|
|
mlp_hidden_dim: int,
|
|
act_fn: Callable[[torch.Tensor], torch.Tensor] = F.silu,
|
|
norm_layer: Optional[Callable[[int], nn.Module]] = None,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__(dim, num_heads, mlp_hidden_dim, act_fn, norm_layer,
|
|
quant_config, prefix)
|
|
self.attn = AscendQwen2_5_VisionAttention(embed_dim=dim,
|
|
num_heads=num_heads,
|
|
projection_size=dim,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.attn")
|
|
|
|
def forward(self, x: torch.Tensor, cu_seqlens: torch.Tensor,
|
|
cos: torch.Tensor, sin: torch.Tensor) -> torch.Tensor:
|
|
x = x + self.attn(
|
|
self.norm1(x), cu_seqlens=cu_seqlens, cos=cos, sin=sin)
|
|
|
|
x = x + self.mlp(self.norm2(x))
|
|
return x
|
|
|
|
|
|
class AscendQwen2_5_VisionPatchEmbed(Qwen2_5_VisionPatchEmbed):
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
x = x.matmul(
|
|
self.proj.weight.data.view(self.hidden_size, -1).transpose(0, 1))
|
|
return x
|
|
|
|
|
|
class AscendQwen2_5_VisionRotaryEmbedding(Qwen2_5_VisionRotaryEmbedding):
|
|
|
|
def __init__(self, dim: int, theta: float = 10000.0) -> None:
|
|
super().__init__(dim, theta)
|
|
inv_freq = 1.0 / (theta
|
|
**(torch.arange(0, dim, 2, dtype=torch.float) / dim))
|
|
self.inv_freq = inv_freq
|
|
|
|
|
|
class AscendQwen2_5_VisionTransformer(Qwen2_5_VisionTransformer):
|
|
|
|
def __init__(
|
|
self,
|
|
vision_config: Qwen2_5_VLVisionConfig,
|
|
norm_eps: float = 1e-6,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
interleaved=False,
|
|
) -> None:
|
|
super().__init__(vision_config, norm_eps, quant_config, prefix)
|
|
norm_layer = partial(RMSNorm, eps=norm_eps)
|
|
self.interleaved = interleaved
|
|
self.enable_pad = False
|
|
head_dim = self.hidden_size // self.num_heads
|
|
self.rotary_pos_emb = AscendQwen2_5_VisionRotaryEmbedding(head_dim //
|
|
2)
|
|
self.patch_embed = AscendQwen2_5_VisionPatchEmbed(
|
|
patch_size=vision_config.patch_size,
|
|
temporal_patch_size=vision_config.temporal_patch_size,
|
|
in_channels=vision_config.in_channels,
|
|
hidden_size=self.hidden_size,
|
|
)
|
|
|
|
act_fn = get_act_and_mul_fn(vision_config.hidden_act)
|
|
self.blocks = nn.ModuleList([
|
|
AscendQwen2_5_VisionBlock(
|
|
dim=self.hidden_size,
|
|
num_heads=self.num_heads,
|
|
mlp_hidden_dim=vision_config.intermediate_size,
|
|
act_fn=act_fn,
|
|
norm_layer=norm_layer,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.blocks.{layer_idx}")
|
|
for layer_idx in range(vision_config.depth)
|
|
])
|
|
self.tp_size = parallel_state.get_tensor_model_parallel_world_size()
|
|
self.tp_rank = parallel_state.get_tensor_model_parallel_rank()
|
|
self.hidden_size_per_attention_head = dist_utils.divide(
|
|
self.hidden_size, self.num_heads)
|
|
|
|
if self.hidden_size_per_attention_head > MIN_PAD_SIZE and self.hidden_size_per_attention_head < MAX_PAD_SIZE:
|
|
self.enable_pad = True
|
|
self.origin_hidden_size_per_attention_head = self.hidden_size_per_attention_head
|
|
self.half_origin_hidden_size_per_attention_head = self.hidden_size_per_attention_head // 2
|
|
self.half_pad_hidden_size_per_attention_head = (
|
|
MAX_PAD_SIZE - self.hidden_size_per_attention_head) // 2
|
|
self.hidden_size_per_attention_head = MAX_PAD_SIZE
|
|
|
|
def cal_cos_sin(self, rotary_pos_emb):
|
|
cos = rotary_pos_emb.cos() # [seqlen, rotary_dim / 2]
|
|
sin = rotary_pos_emb.sin()
|
|
if self.enable_pad:
|
|
cos = torch.nn.functional.pad(
|
|
cos, (0, self.half_pad_hidden_size_per_attention_head))
|
|
sin = torch.nn.functional.pad(
|
|
sin, (0, self.half_pad_hidden_size_per_attention_head))
|
|
|
|
if not self.interleaved:
|
|
cos_new = torch.cat((cos, cos), dim=-1)
|
|
sin_new = torch.cat((sin, sin), dim=-1)
|
|
else:
|
|
cos_new = rearrange(torch.stack((cos, cos), dim=-1),
|
|
"... d two -> ...(d two)",
|
|
two=2)
|
|
sin_new = rearrange(torch.stack((sin, sin), dim=-1),
|
|
"... d two -> ...(d two)",
|
|
two=2)
|
|
cos_new = cos_new.reshape(1, -1, 1,
|
|
self.hidden_size_per_attention_head)
|
|
sin_new = sin_new.reshape(1, -1, 1,
|
|
self.hidden_size_per_attention_head)
|
|
return cos_new, sin_new
|
|
|
|
def pad_qkv_bias(self, bias):
|
|
first_half = bias.reshape(
|
|
-1, 3, self.origin_hidden_size_per_attention_head
|
|
)[:, :, :self.half_origin_hidden_size_per_attention_head]
|
|
second_half = bias.reshape(
|
|
-1, 3, self.origin_hidden_size_per_attention_head
|
|
)[:, :, self.half_origin_hidden_size_per_attention_head:]
|
|
first_half_padded = torch.nn.functional.pad(
|
|
first_half, (0, self.half_pad_hidden_size_per_attention_head))
|
|
second_half_padded = torch.nn.functional.pad(
|
|
second_half, (0, self.half_pad_hidden_size_per_attention_head))
|
|
bias_padded = torch.cat([first_half_padded, second_half_padded], dim=2)
|
|
bias_final = bias_padded.reshape(-1)
|
|
return bias_final
|
|
|
|
def pad_qkv_weight(self, data):
|
|
qkv_weight_first_half = data.reshape(
|
|
-1, 3, self.origin_hidden_size_per_attention_head, self.hidden_size
|
|
)[:, :, :self.half_origin_hidden_size_per_attention_head, :]
|
|
qkv_weight_second_half = data.reshape(
|
|
-1, 3, self.origin_hidden_size_per_attention_head, self.hidden_size
|
|
)[:, :, self.half_origin_hidden_size_per_attention_head:, :]
|
|
|
|
qkv_weight_first_half_padded = torch.nn.functional.pad(
|
|
qkv_weight_first_half,
|
|
(0, 0, 0, self.half_pad_hidden_size_per_attention_head))
|
|
qkv_weight_second_half_padded = torch.nn.functional.pad(
|
|
qkv_weight_second_half,
|
|
(0, 0, 0, self.half_pad_hidden_size_per_attention_head))
|
|
qkv_weight_padded = torch.cat(
|
|
[qkv_weight_first_half_padded, qkv_weight_second_half_padded],
|
|
dim=2)
|
|
qkv_weight_final = qkv_weight_padded.reshape(-1, self.hidden_size)
|
|
return qkv_weight_final
|
|
|
|
def pad_proj_weight(self, data):
|
|
out_weight = torch.nn.functional.pad(
|
|
data.reshape(self.hidden_size, -1,
|
|
self.half_origin_hidden_size_per_attention_head),
|
|
(0, self.half_pad_hidden_size_per_attention_head, 0, 0)).reshape(
|
|
self.hidden_size, -1)
|
|
return out_weight
|
|
|
|
def pad_qkv_weight_scale_offset(self, data):
|
|
reshaped_data = data.reshape(
|
|
-1, 3, self.origin_hidden_size_per_attention_head, 1)
|
|
data1 = reshaped_data[:, :, :self.
|
|
half_origin_hidden_size_per_attention_head, :]
|
|
data2 = reshaped_data[:, :, self.
|
|
half_origin_hidden_size_per_attention_head:, :]
|
|
data1_paded = torch.nn.functional.pad(
|
|
data1, (0, 0, 0, self.half_pad_hidden_size_per_attention_head, 0,
|
|
0, 0, 0))
|
|
data2_paded = torch.nn.functional.pad(
|
|
data2, (0, 0, 0, self.half_pad_hidden_size_per_attention_head, 0,
|
|
0, 0, 0))
|
|
res = torch.cat([data1_paded, data2_paded], dim=2)
|
|
res = res.reshape(-1, 1)
|
|
return res
|
|
|
|
def pad_qkv_deq_scale_quant_bias(self, data):
|
|
reshaped_data = data.reshape(
|
|
-1, 3, self.origin_hidden_size_per_attention_head)
|
|
data1 = reshaped_data[:, :, :self.
|
|
half_origin_hidden_size_per_attention_head]
|
|
data2 = reshaped_data[:, :,
|
|
self.half_origin_hidden_size_per_attention_head:]
|
|
|
|
data1_paded = torch.nn.functional.pad(
|
|
data1, (0, self.half_pad_hidden_size_per_attention_head))
|
|
data2_paded = torch.nn.functional.pad(
|
|
data2, (0, self.half_pad_hidden_size_per_attention_head))
|
|
|
|
res = torch.cat([data1_paded, data2_paded], dim=2)
|
|
res = res.reshape(-1)
|
|
return res
|
|
|
|
def load_weights(self, weights: Iterable[Tuple[str,
|
|
torch.Tensor]]) -> Set[str]:
|
|
stacked_params_mapping: list[tuple[str, str, Union[str, int]]] = [
|
|
# (param_name, shard_name, shard_id)
|
|
("qkv_proj", "q_proj", "q"),
|
|
("qkv_proj", "k_proj", "k"),
|
|
("qkv_proj", "v_proj", "v"),
|
|
("mlp.gate_up_proj.", "mlp.gate_proj.", 0),
|
|
("mlp.gate_up_proj.", "mlp.up_proj.", 1),
|
|
]
|
|
params_dict = dict(self.named_parameters(remove_duplicate=False))
|
|
loaded_params: Set[str] = set()
|
|
for name, loaded_weight in weights:
|
|
for (param_name, weight_name, shard_id) in stacked_params_mapping:
|
|
if weight_name not in name:
|
|
continue
|
|
name = name.replace(weight_name, param_name)
|
|
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(param, loaded_weight, shard_id)
|
|
break
|
|
else:
|
|
param = params_dict[name]
|
|
weight_loader = getattr(param, "weight_loader",
|
|
default_weight_loader)
|
|
weight_loader(param, loaded_weight)
|
|
if ("attn.proj.weight_scale" in name or
|
|
"attn.proj.weight_offset" in name) and self.enable_pad:
|
|
continue
|
|
elif ("attn.proj.deq_scale" in name
|
|
or "attn.proj.quant_bias" in name) and self.enable_pad:
|
|
continue
|
|
elif ("attn.qkv.weight_scale" in name
|
|
or "attn.qkv.weight_offset" in name) and self.enable_pad:
|
|
param.data = self.pad_qkv_weight_scale_offset(param.data)
|
|
elif ("attn.qkv.deq_scale" in name
|
|
or "attn.qkv.quant_bias" in name) and self.enable_pad:
|
|
param.data = self.pad_qkv_deq_scale_quant_bias(param.data)
|
|
elif ("attn.proj.weight" in name) and self.enable_pad:
|
|
param.data = self.pad_proj_weight(param.data)
|
|
elif ("attn.qkv.weight" in name) and self.enable_pad:
|
|
param.data = self.pad_qkv_weight(param.data)
|
|
elif ("attn.qkv.bias" in name) and self.enable_pad:
|
|
param.data = self.pad_qkv_bias(param.data)
|
|
loaded_params.add(name)
|
|
return loaded_params
|
|
|
|
def rot_pos_emb(self, grid_thw: torch.Tensor) -> torch.Tensor:
|
|
pos_ids = []
|
|
for t, h, w in grid_thw:
|
|
hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
|
|
wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
|
|
hpos_ids = hpos_ids.reshape(
|
|
h // self.spatial_merge_size,
|
|
self.spatial_merge_size,
|
|
w // self.spatial_merge_size,
|
|
self.spatial_merge_size,
|
|
).permute(0, 2, 1, 3).flatten()
|
|
wpos_ids = wpos_ids.reshape(
|
|
h // self.spatial_merge_size,
|
|
self.spatial_merge_size,
|
|
w // self.spatial_merge_size,
|
|
self.spatial_merge_size,
|
|
).permute(0, 2, 1, 3).flatten()
|
|
pos_ids.append(
|
|
torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
|
|
pos_ids = torch.cat(pos_ids, dim=0)
|
|
max_grid_size = grid_thw[:, 1:].max()
|
|
rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
|
|
rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
|
|
return rotary_pos_emb
|
|
|
|
def get_window_index(self, grid_thw):
|
|
window_index: list = []
|
|
cu_window_seqlens: list = [0]
|
|
window_index_id = 0
|
|
vit_merger_window_size = (self.window_size //
|
|
self.spatial_merge_size // self.patch_size)
|
|
|
|
for grid_t, grid_h, grid_w in grid_thw:
|
|
llm_grid_h = grid_h // self.spatial_merge_size
|
|
llm_grid_w = grid_w // self.spatial_merge_size
|
|
index = torch.arange(grid_t * llm_grid_h * llm_grid_w).reshape(
|
|
grid_t, llm_grid_h, llm_grid_w)
|
|
pad_h = vit_merger_window_size - llm_grid_h % vit_merger_window_size
|
|
pad_w = vit_merger_window_size - llm_grid_w % vit_merger_window_size
|
|
num_windows_h = (llm_grid_h + pad_h) // vit_merger_window_size
|
|
num_windows_w = (llm_grid_w + pad_w) // vit_merger_window_size
|
|
index_padded = F.pad(index, (0, pad_w, 0, pad_h), 'constant', -100)
|
|
index_padded = index_padded.reshape(grid_t, num_windows_h,
|
|
vit_merger_window_size,
|
|
num_windows_w,
|
|
vit_merger_window_size)
|
|
index_padded = index_padded.permute(0, 1, 3, 2, 4).reshape(
|
|
grid_t, num_windows_h * num_windows_w, vit_merger_window_size,
|
|
vit_merger_window_size)
|
|
seqlens = (index_padded != -100).sum([2, 3]).reshape(-1)
|
|
index_padded = index_padded.reshape(-1)
|
|
index_new = index_padded[index_padded != -100]
|
|
window_index.append(index_new + window_index_id)
|
|
cu_seqlens_tmp = seqlens.cumsum(
|
|
0) * self.spatial_merge_unit + cu_window_seqlens[-1]
|
|
cu_window_seqlens.extend(cu_seqlens_tmp.tolist())
|
|
window_index_id += (grid_t * llm_grid_h * llm_grid_w).item()
|
|
window_index = torch.cat(window_index, dim=0)
|
|
return window_index, cu_window_seqlens
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
grid_thw: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
# compute cu_seqlens
|
|
cu_seqlens = torch.repeat_interleave(grid_thw[:, 1] * grid_thw[:, 2],
|
|
grid_thw[:,
|
|
0]).cpu().to(torch.int32)
|
|
|
|
# patchify
|
|
x = self.patch_embed(x)
|
|
|
|
# compute position embedding
|
|
rotary_pos_emb = self.rot_pos_emb(grid_thw)
|
|
|
|
# windows attention
|
|
window_index, cu_window_seqlens = self.get_window_index(grid_thw)
|
|
cu_window_seqlens = torch.tensor(
|
|
cu_window_seqlens,
|
|
device=x.device,
|
|
dtype=grid_thw.dtype if torch.jit.is_tracing() else torch.int32)
|
|
cu_window_seqlens = torch.unique_consecutive(cu_window_seqlens)
|
|
cu_window_seqlens = torch.diff(cu_window_seqlens).cpu().to(torch.int32)
|
|
seq_len, _ = x.size()
|
|
x = x.reshape(seq_len // self.spatial_merge_unit,
|
|
self.spatial_merge_unit, -1)
|
|
x = x[window_index, :, :]
|
|
x = x.reshape(seq_len, -1)
|
|
rotary_pos_emb = rotary_pos_emb.reshape(
|
|
seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1)
|
|
rotary_pos_emb = rotary_pos_emb[window_index, :, :]
|
|
rotary_pos_emb = rotary_pos_emb.reshape(seq_len, -1)
|
|
|
|
cos, sin = self.cal_cos_sin(rotary_pos_emb)
|
|
|
|
# transformers
|
|
x = x.unsqueeze(1)
|
|
for layer_num, blk in enumerate(self.blocks):
|
|
if layer_num in self.fullatt_block_indexes:
|
|
cu_seqlens_now = cu_seqlens
|
|
else:
|
|
cu_seqlens_now = cu_window_seqlens
|
|
x = blk(x, cu_seqlens=cu_seqlens_now, cos=cos, sin=sin)
|
|
|
|
# adapter
|
|
x = self.merger(x)
|
|
reverse_indices = torch.argsort(window_index)
|
|
x = x[reverse_indices, :]
|
|
return x
|
|
|
|
|
|
@MULTIMODAL_REGISTRY.register_processor(
|
|
Qwen2_5_VLMultiModalProcessor,
|
|
info=Qwen2_5_VLProcessingInfo,
|
|
dummy_inputs=Qwen2_5_VLDummyInputsBuilder)
|
|
class AscendQwen2_5_VLForConditionalGeneration(
|
|
Qwen2_5_VLForConditionalGeneration):
|
|
packed_modules_mapping = {
|
|
"qkv_proj": [
|
|
"q_proj",
|
|
"k_proj",
|
|
"v_proj",
|
|
],
|
|
"gate_up_proj": [
|
|
"gate_proj",
|
|
"up_proj",
|
|
],
|
|
}
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__(vllm_config=vllm_config, prefix=prefix)
|
|
config: Qwen2_5_VLConfig = vllm_config.model_config.hf_config
|
|
quant_config = vllm_config.quant_config
|
|
self.visual = AscendQwen2_5_VisionTransformer(
|
|
vision_config=config.vision_config,
|
|
norm_eps=getattr(config, "rms_norm_eps", 1e-6),
|
|
quant_config=self._maybe_ignore_quant_config(quant_config),
|
|
prefix=maybe_prefix(prefix, "visual"),
|
|
)
|
|
|
|
def _process_image_input(self, image_input) -> tuple[torch.Tensor, ...]:
|
|
|
|
grid_thw = image_input["image_grid_thw"]
|
|
assert grid_thw.ndim == 2
|
|
|
|
if image_input["type"] == "image_embeds":
|
|
image_embeds = image_input["image_embeds"].type(self.visual.dtype)
|
|
else:
|
|
pixel_values = image_input["pixel_values"].type(self.visual.dtype)
|
|
image_embeds = self.visual(pixel_values, grid_thw=grid_thw)
|
|
|
|
# Split concatenated embeddings for each image item.
|
|
merge_size = self.visual.spatial_merge_size
|
|
sizes = grid_thw.prod(-1) // merge_size // merge_size
|
|
return image_embeds.split(sizes.tolist())
|
|
|
|
def _process_video_input(self, video_input) -> tuple[torch.Tensor, ...]:
|
|
|
|
grid_thw = video_input["video_grid_thw"]
|
|
assert grid_thw.ndim == 2
|
|
|
|
if video_input["type"] == "video_embeds":
|
|
video_embeds = video_input["video_embeds"].type(self.visual.dtype)
|
|
else:
|
|
pixel_values_videos = video_input["pixel_values_videos"].type(
|
|
self.visual.dtype)
|
|
video_embeds = self.visual(pixel_values_videos, grid_thw=grid_thw)
|
|
|
|
# Split concatenated embeddings for each video item.
|
|
merge_size = self.visual.spatial_merge_size
|
|
sizes = grid_thw.prod(-1) // merge_size // merge_size
|
|
return video_embeds.split(sizes.tolist())
|