mirror of
https://github.com/vllm-project/vllm-ascend.git
synced 2025-10-20 13:43:53 +08:00
### What this PR does / why we need it? - Adds the `mla_preprocess` custom kernel to provide an optimized pre-processing operator for Multi-head Latent Attention (MLA) on Ascend NPUs. - Wires the new kernel into the C++ extension pipeline so vLLM can invoke it directly, cutting Python-side tensor shuffling and memory copies that previously bottlenecked MLA compilation paths. ### Does this PR introduce any user-facing change? - No. The change only introduces a low-level kernel; public APIs and inference behavior remain unchanged. ### How was this patch tested? - Dedicated Ascend kernels are not covered by our CI yet, so no extra automated tests were added. Future MLA-focused regression runs will cover this path. - vLLM version: v0.11.0 Signed-off-by: Chen Chen <0109chenchen@gmail.com>
164 lines
4.7 KiB
C++
164 lines
4.7 KiB
C++
/*
|
|
* Copyright (c) Huawei Technologies Co., Ltd. 2024. All rights reserved.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <optional>
|
|
#include <torch/library.h>
|
|
|
|
#include <vector>
|
|
#include "kernels/types.h"
|
|
#include "torch_npu/csrc/aten/common/from_blob.h"
|
|
|
|
namespace vllm_ascend {
|
|
extern void rotary_embedding_impl(AscendType type, bool isNeox, void *stream, int64_t *positions, void *queryDst,
|
|
void *keyDst, void *query, void *key, void *cosSinCache, const int rotDim,
|
|
const int64_t queryStride, const int64_t keyStride, const int64_t dstQueryStride,
|
|
const int64_t dstKeyStride, const int numHeads, const int numKvHeads,
|
|
const int headSize, const int64_t numTokens, const uint32_t loopCnt,
|
|
uint32_t aivNum);
|
|
|
|
extern void get_masked_input_and_mask_impl(
|
|
void* stream,
|
|
void* input,
|
|
void* masked_input,
|
|
void* mask_out,
|
|
const int64_t org_vocab_start_index,
|
|
const int64_t org_vocab_end_index,
|
|
const int64_t num_org_vocab_padding,
|
|
const int64_t added_vocab_start_index,
|
|
const int64_t added_vocab_end_index,
|
|
const int64_t size,
|
|
const uint32_t loop_cnt,
|
|
const uint32_t aiv_num);
|
|
|
|
torch::Tensor weak_ref_tensor(torch::Tensor& tensor) {
|
|
if (!tensor.is_privateuseone()) {
|
|
throw std::runtime_error("Tensor must be on NPU device");
|
|
}
|
|
// Get the raw data pointer
|
|
void* data_ptr = tensor.data_ptr();
|
|
// Get tensor sizes and strides
|
|
std::vector<int64_t> sizes = tensor.sizes().vec();
|
|
std::vector<int64_t> strides = tensor.strides().vec();
|
|
// Get tensor options (dtype, device)
|
|
auto options = tensor.options();
|
|
// Create a new tensor from the raw data pointer
|
|
auto new_tensor = at_npu::native::from_blob(data_ptr, sizes, strides, options);
|
|
return new_tensor;
|
|
}
|
|
|
|
extern void bgmv_shrink_impl(
|
|
AscendType type,
|
|
void *stream,
|
|
void *x,
|
|
void *weight,
|
|
void *indices,
|
|
uint32_t indicesSize,
|
|
void *y,
|
|
uint32_t batch_size,
|
|
uint32_t num_tokens_per_core,
|
|
uint32_t input_hidden_dim,
|
|
uint32_t lora_rank,
|
|
float scale);
|
|
|
|
extern void bgmv_expand_impl(
|
|
AscendType type,
|
|
void *stream,
|
|
void *x,
|
|
void *weight,
|
|
void *indices,
|
|
uint32_t indicesSize,
|
|
void *y,
|
|
void *y_out,
|
|
uint32_t batch_size,
|
|
uint32_t num_tokens_per_core,
|
|
uint32_t lora_rank,
|
|
uint32_t output_hidden_dim,
|
|
uint32_t slice_offset,
|
|
uint32_t output_full_dim);
|
|
|
|
extern void sgmv_shrink_impl(
|
|
AscendType type,
|
|
void *stream,
|
|
void *x,
|
|
void *weight,
|
|
void *loraIndices,
|
|
uint32_t loraIndicesSize,
|
|
void *seqLen,
|
|
uint32_t seqLenSize,
|
|
void *y,
|
|
uint32_t batch_size,
|
|
uint32_t num_tokens_per_core,
|
|
uint32_t input_hidden_dim,
|
|
uint32_t lora_rank,
|
|
float scale);
|
|
|
|
extern void sgmv_expand_impl(
|
|
AscendType type,
|
|
void *stream,
|
|
void *x,
|
|
void *weight,
|
|
void *loraIndices,
|
|
uint32_t loraIndicesSize,
|
|
void *seqLen,
|
|
uint32_t seqLenSize,
|
|
void *y,
|
|
void *y_out,
|
|
uint32_t batch_size,
|
|
uint32_t num_tokens_per_core,
|
|
uint32_t lora_rank,
|
|
uint32_t output_hidden_dim,
|
|
uint32_t slice_offset,
|
|
uint32_t output_full_dim);
|
|
|
|
extern void mla_preprocess_impl(
|
|
void* stream,
|
|
void* hidden_state,
|
|
void* gamma1,
|
|
void* beta1,
|
|
void* quant_scale1,
|
|
void* quant_offset1,
|
|
void* wdqkv,
|
|
void* bias1,
|
|
void* gamma2,
|
|
void* beta2,
|
|
void* quant_scale2,
|
|
void* quant_offset2,
|
|
void* gamma3,
|
|
void* sin1,
|
|
void* cos1,
|
|
void* sin2,
|
|
void* cos2,
|
|
void* keycache,
|
|
void* slot_mapping,
|
|
void* wuq,
|
|
void* bias2,
|
|
void* wuk,
|
|
void* descale1,
|
|
void* descale2,
|
|
void* ctkv_scale,
|
|
void* qnope_scale,
|
|
void* q,
|
|
void* keycache_out,
|
|
void* q2,
|
|
void* keycache_out2,
|
|
void* workspace,
|
|
void* tiling,
|
|
const uint32_t block_dim
|
|
);
|
|
}
|