mirror of
https://github.com/vllm-project/vllm-ascend.git
synced 2025-10-20 21:53:54 +08:00
### What this PR does / why we need it? - Adds the `mla_preprocess` custom kernel to provide an optimized pre-processing operator for Multi-head Latent Attention (MLA) on Ascend NPUs. - Wires the new kernel into the C++ extension pipeline so vLLM can invoke it directly, cutting Python-side tensor shuffling and memory copies that previously bottlenecked MLA compilation paths. ### Does this PR introduce any user-facing change? - No. The change only introduces a low-level kernel; public APIs and inference behavior remain unchanged. ### How was this patch tested? - Dedicated Ascend kernels are not covered by our CI yet, so no extra automated tests were added. Future MLA-focused regression runs will cover this path. - vLLM version: v0.11.0 Signed-off-by: Chen Chen <0109chenchen@gmail.com>
122 lines
3.5 KiB
C++
122 lines
3.5 KiB
C++
/* Adapted from
|
|
* https://gitee.com/ascend/ascend-transformer-boost.git
|
|
*
|
|
* Copyright (c) 2024 Huawei Technologies Co., Ltd.
|
|
* This file is a part of the CANN Open Software.
|
|
* Licensed under CANN Open Software License Agreement Version 1.0 (the "License").
|
|
* Please refer to the License for details. You may not use this file except in compliance with the License.
|
|
* THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED,
|
|
* INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
|
|
* See LICENSE in the root of the software repository for the full text of the License.
|
|
*/
|
|
|
|
#ifndef INCLUDE_COMMON_FUNC_H
|
|
#define INCLUDE_COMMON_FUNC_H
|
|
|
|
#include <limits>
|
|
#include <type_traits>
|
|
|
|
#ifdef __CCE_KT_TEST__
|
|
#include "stub_def.h"
|
|
#include "stub_fun.h"
|
|
#else
|
|
#include "kernel_macros.h"
|
|
#endif
|
|
|
|
template <uint32_t ALIGN, typename T = uint32_t>
|
|
inline __aicore__ T RoundUp(const T val)
|
|
{
|
|
static_assert(ALIGN != 0, "align must not be zero");
|
|
static_assert(std::is_arithmetic<T>::value, "T must be an arithmetic type");
|
|
T align = ALIGN;
|
|
if (val + align - 1 < val) {
|
|
return val;
|
|
}
|
|
return (val + align - 1) / align * align;
|
|
}
|
|
|
|
template <typename T>
|
|
inline __aicore__ T RoundUp(const T val, const T align)
|
|
{
|
|
static_assert(std::is_arithmetic<T>::value, "T must be an arithmetic type");
|
|
if (align == 0 || val + align - 1 < val) {
|
|
return val;
|
|
}
|
|
return (val + align - 1) / align * align;
|
|
}
|
|
|
|
template <uint32_t DIVISOR, typename T = uint32_t>
|
|
inline __aicore__ T CeilDiv(const T dividend)
|
|
{
|
|
static_assert(DIVISOR != 0, "align must not be zero");
|
|
static_assert(std::is_arithmetic<T>::value, "T must be an arithmetic type");
|
|
T divisor = DIVISOR;
|
|
if (dividend + divisor - 1 < dividend) {
|
|
return dividend;
|
|
}
|
|
return (dividend + divisor - 1) / divisor;
|
|
}
|
|
|
|
template <typename T>
|
|
constexpr T T_MAX = std::numeric_limits<T>::max();
|
|
|
|
template <typename T>
|
|
inline __aicore__ T CeilDiv(const T dividend, const T divisor)
|
|
{
|
|
static_assert(std::is_arithmetic<T>::value, "T must be an arithmetic type");
|
|
if (divisor == 0 || dividend + divisor - 1 < dividend) {
|
|
return T_MAX<T>;
|
|
}
|
|
return (dividend + divisor - 1) / divisor;
|
|
}
|
|
|
|
template <typename T>
|
|
__aicore__ inline T Min(const T lhs, const T rhs)
|
|
{
|
|
return lhs < rhs ? lhs : rhs;
|
|
}
|
|
|
|
template <typename Dtype>
|
|
__aicore__ __attribute__((always_inline)) inline uint32_t BlockSize()
|
|
{
|
|
return 32 / sizeof(Dtype);
|
|
}
|
|
|
|
template <typename Dtype>
|
|
__aicore__ __attribute__((always_inline)) inline uint32_t MatrixSize()
|
|
{
|
|
return 512 / sizeof(Dtype);
|
|
}
|
|
|
|
template <typename Dtype>
|
|
__aicore__ __attribute__((always_inline)) inline uint64_t BlockSizeRoundUp(uint64_t num)
|
|
{
|
|
return (num + BlockSize<Dtype>() - 1) / BlockSize<Dtype>() * BlockSize<Dtype>();
|
|
}
|
|
|
|
template <typename Dtype>
|
|
__aicore__ __attribute__((always_inline)) inline uint64_t NumBlocksRoundUp(uint64_t num)
|
|
{
|
|
return (num + BlockSize<Dtype>() - 1) / BlockSize<Dtype>();
|
|
}
|
|
|
|
template <typename Dtype>
|
|
__aicore__ __attribute__((always_inline)) inline uint64_t MatrixSizeRoundUp(uint64_t num)
|
|
{
|
|
return (num + MatrixSize<Dtype>() - 1) / MatrixSize<Dtype>() * MatrixSize<Dtype>();
|
|
}
|
|
|
|
template <typename Dtype>
|
|
__aicore__ __attribute__((always_inline)) inline uint64_t NumMatrixsRoundUp(uint64_t num)
|
|
{
|
|
return (num + MatrixSize<Dtype>() - 1) / MatrixSize<Dtype>();
|
|
}
|
|
|
|
template <typename Dtype>
|
|
__aicore__ __attribute__((always_inline)) inline uint64_t L0HalfSize()
|
|
{
|
|
return 32 * 1024 / sizeof(Dtype);
|
|
}
|
|
|
|
#endif
|