Files
vllm-ascend/vllm_ascend/attention/attention_v1.py
wangxiyuan ba19dd3183 Revert PTA upgrade PR (#3352)
we notice that torch npu 0919 doesn't work. This PR revert related
change which rely on 0919 version.
Revert PR: #3295  #3205  #3102 

Related: #3353

- vLLM version: v0.11.0
2025-10-10 14:09:53 +08:00

667 lines
26 KiB
Python

#
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This file is a part of the vllm-ascend project.
#
from dataclasses import dataclass
from enum import Enum
from typing import ClassVar, List, Optional, Tuple, Type
import torch
import torch.nn as nn
import torch_npu
from vllm.attention.backends.abstract import (AttentionBackend, AttentionImpl,
AttentionLayer, AttentionType)
from vllm.config import VllmConfig
from vllm.forward_context import ForwardContext, get_forward_context
from vllm.utils import cdiv, direct_register_custom_op
from vllm.v1.attention.backends.utils import AttentionCGSupport
from vllm.v1.core.sched.output import SchedulerOutput
from vllm.v1.kv_cache_interface import AttentionSpec
from vllm_ascend.attention.utils import (AscendCommonAttentionMetadata,
maybe_save_kv_layer_to_connector,
wait_for_kv_layer_from_connector)
from vllm_ascend.compilation.acl_graph import get_graph_params
from vllm_ascend.ops.attention import vanilla_chunked_prefill
from vllm_ascend.utils import (ACL_FORMAT_FRACTAL_NZ, aligned_16, is_310p,
nd_to_nz_2d, nd_to_nz_spec)
class AscendAttentionBackend(AttentionBackend):
accept_output_buffer: bool = True
@staticmethod
def get_name() -> str:
return "ASCEND"
@staticmethod
def get_impl_cls() -> Type["AscendAttentionBackendImpl"]:
return AscendAttentionBackendImpl
@staticmethod
def get_metadata_cls() -> Type["AscendMetadata"]:
return AscendMetadata
@staticmethod
def get_builder_cls() -> type["AscendAttentionMetadataBuilder"]:
return AscendAttentionMetadataBuilder
@staticmethod
def get_kv_cache_shape(
num_blocks: int,
block_size: int,
num_kv_heads: int,
head_size: int,
) -> Tuple[int, ...]:
if is_310p():
return (2, num_blocks, num_kv_heads * head_size // 16, block_size,
16)
return (2, num_blocks, block_size, num_kv_heads, head_size)
@staticmethod
def get_bsh_kv_cache_shape(
num_blocks: int,
block_size: int,
num_kv_heads: int,
head_size: int,
) -> Tuple[int, ...]:
return (2, num_blocks, block_size, num_kv_heads * head_size)
@staticmethod
def swap_blocks(
src_kv_cache: List[torch.Tensor],
dst_kv_cache: List[torch.Tensor],
src_to_dst: torch.Tensor,
) -> None:
src_key_cache, src_value_cache = src_kv_cache[0], src_kv_cache[1]
dst_key_cache, dst_value_cache = dst_kv_cache[0], dst_kv_cache[1]
src_indices = src_to_dst[:, 0]
dst_indices = src_to_dst[:, 1]
dst_key_cache[dst_indices] = src_key_cache[src_indices].to(
dst_key_cache.device)
dst_value_cache[dst_indices] = src_value_cache[src_indices].to(
dst_key_cache.device)
@staticmethod
def copy_blocks(
kv_caches: List[torch.Tensor],
src_to_dists: torch.Tensor,
) -> None:
src_indices = src_to_dists[:, 0]
dst_indices = src_to_dists[:, 1]
for kv_cache in kv_caches:
key_caches = kv_cache[0]
value_caches = kv_cache[1]
key_caches[dst_indices] = key_caches[src_indices]
value_caches[dst_indices] = value_caches[src_indices]
@staticmethod
def get_supported_block_size() -> list[int]:
return [64]
class AscendAttentionState(Enum):
PrefillNoCache = 0
PrefillCacheHit = 1
DecodeOnly = 2
ChunkedPrefill = 3
SpecDecoding = 4
@dataclass
class AscendMetadata:
# **************************** Basic Properties ************************** #
attn_mask: Optional[torch.Tensor] = None
# Current state of this attention run.
attn_state: AscendAttentionState = AscendAttentionState.ChunkedPrefill
# Number of tokens excluding padding.
num_actual_tokens: int = 0
# The sequence length per sequence. Sequence length means the computed
# tokens + new tokens (is None if it is a decoding).
# (batch_size,)
seq_lens: torch.Tensor = None
query_start_loc: torch.Tensor = None
query_lens: torch.Tensor = None
# Maximum query length in the batch (None for decoding).
max_query_len: Optional[int] = None
# ********************** KV Cache Related Properties ********************* #
# Block addresses per sequence (Seq id -> list of physical block).
# (batch_size, max_blocks_per_seq)
block_tables: torch.Tensor = None
# The indices of the token slots that input tokens will be stored into.
# E.g., if `slot_mapping` is [35, 2, 17] and the block size is 16, the
# three tokens are stored in the 3rd slot in block 2, 2nd slot in block 0,
# and 1st slot in block 1, respectively.
# (num_tokens,)
slot_mapping: torch.Tensor = None
# *************************** Other Properties *************************** #
enable_dbo_across_dp: bool = False
class AscendAttentionMetadataBuilder:
# Does this backend/builder support ACL Graphs for attention (default: no).
aclgraph_support: ClassVar[AttentionCGSupport] = \
AttentionCGSupport.UNIFORM_SINGLE_TOKEN_DECODE
# Does this backend/builder reorder the batch?
# If not, set this to None. Otherwise set it to the query
# length that will be pulled into the front of the batch.
reorder_batch_threshold: ClassVar[int] = 1
def __init__(
self,
kv_cache_spec: AttentionSpec,
layer_names: list[str],
vllm_config: VllmConfig,
device: torch.device,
):
self.vllm_config = vllm_config
self.model_config = vllm_config.model_config
self.device = device
self.max_num_blocks_per_req = cdiv(
self.model_config.max_model_len,
AscendAttentionBackend.get_supported_block_size()[0])
def reorder_batch(self, input_batch,
scheduler_output: "SchedulerOutput") -> bool:
return False
def build(
self,
common_prefix_len: int,
common_attn_metadata: AscendCommonAttentionMetadata,
model: Optional[nn.Module] = None,
):
num_reqs = common_attn_metadata.num_reqs
num_actual_tokens = common_attn_metadata.num_actual_tokens
query_start_loc_cpu = common_attn_metadata.query_start_loc_cpu[:
num_reqs
+ 1]
block_table = common_attn_metadata.block_table_tensor
query_lens = query_start_loc_cpu[1:] - query_start_loc_cpu[:-1]
seq_lens = common_attn_metadata.seq_lens_cpu[:num_reqs]
slot_mapping = common_attn_metadata.slot_mapping[:num_actual_tokens]
attn_mask = common_attn_metadata.attn_mask
attn_state = common_attn_metadata.attn_state
query_start_loc_cpu = common_attn_metadata.query_start_loc_cpu[:
num_reqs
+ 1]
query_start_loc = query_start_loc_cpu.to(self.device,
non_blocking=True)
if is_310p():
if attn_state == AscendAttentionState.PrefillNoCache:
mask_nz = nd_to_nz_2d(attn_mask)
attn_mask = torch_npu.npu_format_cast(mask_nz.contiguous(),
ACL_FORMAT_FRACTAL_NZ)
elif attn_state == AscendAttentionState.ChunkedPrefill:
mask_nz = nd_to_nz_spec(attn_mask)
attn_mask = torch_npu.npu_format_cast(mask_nz.contiguous(),
ACL_FORMAT_FRACTAL_NZ)
attn_metadata = AscendMetadata(
num_actual_tokens=num_actual_tokens,
block_tables=block_table,
query_start_loc=query_start_loc,
query_lens=query_lens,
seq_lens=seq_lens,
max_query_len=common_attn_metadata.max_query_len,
slot_mapping=slot_mapping,
attn_mask=attn_mask,
attn_state=attn_state,
enable_dbo_across_dp=common_attn_metadata.enable_dbo_across_dp)
return attn_metadata
def build_for_graph_capture(
self,
common_attn_metadata: AscendCommonAttentionMetadata,
attn_state: AscendAttentionState = AscendAttentionState.DecodeOnly,
):
if attn_state == AscendAttentionState.DecodeOnly:
attn_metadata = self.build(
common_prefix_len=0,
common_attn_metadata=common_attn_metadata,
)
else:
raise NotImplementedError(
"Currently we only support building dummy metadata for DecodeOnly state"
)
attn_metadata.attn_state = attn_state
return attn_metadata
class AscendAttentionBackendImpl(AttentionImpl):
def __init__(
self,
num_heads: int,
head_size: int,
scale: float,
num_kv_heads: int,
alibi_slopes: Optional[List[float]],
sliding_window: Optional[int],
kv_cache_dtype: str,
logits_soft_cap: Optional[float],
attn_type: str,
kv_sharing_target_layer_name: Optional[str],
**kwargs,
) -> None:
self.num_heads = num_heads
self.head_size = head_size
self.scale = float(scale)
self.num_kv_heads = num_heads if num_kv_heads is None else num_kv_heads
self.hidden_size = self.num_heads * self.head_size
self.kv_cache_dtype = kv_cache_dtype
self.sliding_window = sliding_window
if alibi_slopes is not None:
alibi_slopes = torch.tensor(alibi_slopes,
dtype=torch.float32,
device="npu")
self.alibi_slopes = alibi_slopes
self.attn_type = attn_type
assert self.num_heads % self.num_kv_heads == 0
self.num_queries_per_kv = self.num_heads // self.num_kv_heads
self.key_cache = None
self.value_cache = None
def _forward_prefill_no_cache(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attn_metadata: AscendMetadata,
output: Optional[torch.Tensor] = None,
num_tokens=0,
) -> torch.Tensor:
assert attn_metadata is not None
assert attn_metadata.attn_mask is not None
mask = attn_metadata.attn_mask
if is_310p():
# align q k v output tensors
query = aligned_16(query)
key = aligned_16(key)
value = aligned_16(value)
output = aligned_16(output)
# do reformat in case of broadcasted tensors
mask = mask.repeat(attn_metadata.seq_lens.size(0), 1, 1, 1)
mask = torch_npu.npu_format_cast(mask.contiguous(),
ACL_FORMAT_FRACTAL_NZ)
torch_npu._npu_flash_attention(query=query,
key=key,
value=value,
mask=mask,
seq_len=attn_metadata.seq_lens,
scale_value=self.scale,
num_heads=self.num_heads,
num_kv_heads=self.num_kv_heads,
out=output)
assert output is not None
return output[:num_tokens, :, :]
def _forward_prefill_cache_hit(
self,
query: torch.Tensor,
attn_metadata: AscendMetadata,
output: Optional[torch.Tensor] = None,
) -> torch.Tensor:
assert attn_metadata is not None
assert attn_metadata.attn_mask is not None
compress_mask = attn_metadata.attn_mask
batch_size = attn_metadata.query_lens.shape[0]
block_table = attn_metadata.block_tables[:batch_size, :]
torch_npu._npu_flash_attention_qlens(
query=query,
key_cache=self.key_cache,
value_cache=self.value_cache,
block_table=block_table,
mask=compress_mask,
seq_len=attn_metadata.query_lens,
context_lens=attn_metadata.seq_lens,
num_kv_heads=self.num_kv_heads,
num_heads=self.num_heads,
scale_value=self.scale,
out=output)
return output
def _forward_decode_only(
self,
query: torch.Tensor,
attn_metadata: AscendMetadata,
output: Optional[torch.Tensor] = None,
) -> torch.Tensor:
if is_310p():
# seq_lens_tensor needs to be transferred to the device for 310P.
attn_metadata.seq_lens = \
attn_metadata.seq_lens.to(device=query.device)
if self.sliding_window is not None and attn_metadata.seq_lens.shape[
0] == query.size(0):
batch_size = attn_metadata.seq_lens.shape[0]
block_size = 128
query = query.view(batch_size, 1, self.num_heads * self.head_size)
key = self.key_cache
value = self.value_cache
if self.key_cache is not None and self.value_cache is not None:
block_size = self.key_cache.shape[1]
key = self.key_cache.flatten(2, 3).contiguous()
value = self.value_cache.flatten(2, 3).contiguous()
output, _ = torch_npu.npu_fused_infer_attention_score(
query,
key,
value,
num_heads=self.num_heads,
num_key_value_heads=self.num_kv_heads,
input_layout="BSH",
block_size=block_size,
pre_tokens=self.sliding_window,
scale=self.scale,
block_table=attn_metadata.block_tables,
actual_seq_lengths=[1] * len(attn_metadata.seq_lens),
actual_seq_lengths_kv=attn_metadata.seq_lens)
output = output.view(batch_size, self.num_heads, self.head_size)
else:
graph_params = get_graph_params()
forward_context: ForwardContext = get_forward_context()
num_tokens = query.shape[0]
if forward_context.capturing:
stream = torch_npu.npu.current_stream()
event = torch.npu.ExternalEvent()
event.wait(stream)
event.reset(stream)
graph_params.events[num_tokens].append(event)
graph_params.attn_params[num_tokens].append((
query,
self.key_cache,
self.value_cache,
self.num_kv_heads,
self.num_heads,
self.scale,
attn_metadata.block_tables,
attn_metadata.seq_lens,
output,
))
torch.npu.graph_task_group_begin(stream)
torch_npu._npu_paged_attention(
query=query,
key_cache=self.key_cache,
value_cache=self.value_cache,
num_kv_heads=self.num_kv_heads,
num_heads=self.num_heads,
scale_value=self.scale,
block_table=attn_metadata.block_tables,
context_lens=attn_metadata.seq_lens,
out=output)
handle = torch.npu.graph_task_group_end(stream)
graph_params.handles[num_tokens].append(handle)
else:
torch_npu._npu_paged_attention(
query=query,
key_cache=self.key_cache,
value_cache=self.value_cache,
num_kv_heads=self.num_kv_heads,
num_heads=self.num_heads,
scale_value=self.scale,
block_table=attn_metadata.block_tables,
context_lens=attn_metadata.seq_lens,
out=output)
return output
def _forward_v1_style(
self,
query: torch.Tensor,
attn_metadata: AscendMetadata,
output: Optional[torch.Tensor] = None,
) -> torch.Tensor:
# Use chunked prefill for head size 192 scenario, like deepseek
# paged_attention_splitfuse maybe crash at such scenario.
# TODO: vanilla path will be removed after the kernel support
# head_size 192 scenario.
if self.head_size == 192:
cu_seqlen_q = [0] + attn_metadata.query_lens.tolist()
cu_seqlen_k = [0] + attn_metadata.seq_lens.tolist()
cu_seqlen_q = torch.tensor(cu_seqlen_q, device=query.device)
cu_seqlen_k = torch.tensor(cu_seqlen_k, device=query.device)
cu_seqlen_q = torch.cumsum(cu_seqlen_q, dim=0)
cu_seqlen_k = torch.cumsum(cu_seqlen_k, dim=0)
max_seqlen_q = torch.max(attn_metadata.query_lens)
max_seqlen_k = torch.max(attn_metadata.seq_lens)
vanilla_chunked_prefill(output, query, self.key_cache,
self.value_cache,
attn_metadata.block_tables, cu_seqlen_q,
cu_seqlen_k, max_seqlen_q, max_seqlen_k,
self.scale, None, True)
return output
# Use paged attention.
assert attn_metadata is not None
assert attn_metadata.attn_mask is not None
if is_310p():
# Do reformat in case of broadcasted tensors.
attn_metadata.attn_mask = \
torch_npu.npu_format_cast(attn_metadata.attn_mask.contiguous(),
ACL_FORMAT_FRACTAL_NZ)
attn_metadata.seq_lens = \
attn_metadata.seq_lens.to(device=query.device)
if torch.version.cann.startswith("8.3"):
# TODO:The npu_fused_infer_attention_score op is planned to
# be utilized in a wider range in upcoming versions.
num_block, block_size, _, _ = self.key_cache.shape # type: ignore
key = self.key_cache.view( # type: ignore
num_block, block_size, -1)
value = self.value_cache.view( # type: ignore
num_block, block_size, -1)
output, _ = torch_npu.npu_fused_infer_attention_score(
query=query,
key=key,
value=value,
atten_mask=attn_metadata.attn_mask,
block_table=attn_metadata.block_tables,
input_layout="TND",
block_size=block_size,
actual_seq_lengths=attn_metadata.query_start_loc[1:],
actual_seq_lengths_kv=attn_metadata.seq_lens,
num_key_value_heads=self.num_kv_heads,
num_heads=self.num_heads,
scale=self.scale,
sparse_mode=3,
)
else:
torch_npu._npu_paged_attention_splitfuse(
query=query,
key_cache=self.key_cache,
value_cache=self.value_cache,
mask=attn_metadata.attn_mask,
block_table=attn_metadata.block_tables,
seq_len=attn_metadata.query_lens,
context_lens=attn_metadata.seq_lens,
num_kv_heads=self.num_kv_heads,
num_heads=self.num_heads,
scale_value=self.scale,
out=output)
return output
def forward(
self,
layer: AttentionLayer,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
kv_cache: Tuple[torch.Tensor],
attn_metadata: AscendMetadata,
output: Optional[torch.Tensor] = None,
trace_flag: bool = True,
) -> torch.Tensor:
"""Forward pass with Ascend attention.
Args:
query: shape = [batch_size, seq_len, num_heads * head_size]
key: shape = [batch_size, seq_len, num_kv_heads * head_size]
value: shape = [batch_size, seq_len, num_kv_heads * head_size]
kv_cache: shape = [key_cache, value_cache]
key_cache = [num_blocks, block_size,
num_kv_heads, head_size]
value_cache = [num_blocks, block_size,
num_kv_heads, head_size]
attn_metadata: Metadata for attention.
Returns:
shape = [batch_size * seq_len, num_heads, head_size]
"""
num_tokens = query.shape[0]
use_kv_cache_int8 = len(
kv_cache) > 0 and kv_cache[0].dtype == torch.int8
if output is None:
output = torch.empty(num_tokens,
self.num_heads,
self.head_size,
dtype=query.dtype,
device=query.device)
ori_output = output
if trace_flag:
torch.ops.vllm.unified_ascend_attention_with_output(
query=query,
key=key,
value=value,
output=output,
layer_name=layer.layer_name)
elif hasattr(layer, 'quant_method') and use_kv_cache_int8:
output = layer.quant_method.apply(layer, query, key, value,
kv_cache, attn_metadata,
self.attn_type, self.scale,
output)
else:
if attn_metadata is None:
return output.view(num_tokens, self.hidden_size)
num_actual_tokens = attn_metadata.num_actual_tokens
assert layer._k_scale_float == 1.0 and layer._v_scale_float == 1.0
attn_type = self.attn_type
if attn_type != AttentionType.DECODER:
raise NotImplementedError("Encoder self-attention and "
"encoder/decoder cross-attention "
"are not implemented for "
"PallasAttentionBackendImpl")
# View q k v to BSH.
query = query.view(-1, self.num_heads, self.head_size)
key = key.view(-1, self.num_kv_heads, self.head_size)
value = value.view(-1, self.num_kv_heads, self.head_size)
# TODO: Remove this contiguous in the future.
value = value.contiguous()
if len(kv_cache) > 1:
if self.key_cache is None:
self.key_cache, self.value_cache = kv_cache[0], kv_cache[1]
slots = attn_metadata.slot_mapping
torch_npu._npu_reshape_and_cache(
key=key[:num_actual_tokens],
value=value[:num_actual_tokens],
key_cache=self.key_cache,
value_cache=self.value_cache,
slot_indices=slots)
# V0-Style scheduler situation.
if attn_metadata.attn_state == AscendAttentionState.PrefillNoCache:
output = self._forward_prefill_no_cache(
query, key, value, attn_metadata, output, num_tokens)
elif attn_metadata.attn_state == \
AscendAttentionState.PrefillCacheHit:
output = self._forward_prefill_cache_hit(
query, attn_metadata, output)
elif attn_metadata.attn_state == AscendAttentionState.DecodeOnly:
output = self._forward_decode_only(query, attn_metadata,
output)
# Normal V1 situation.
else:
if torch.version.cann.startswith("8.3"):
# npu_fused_infer_attention_score does not support cases
# where query.shape[0] != attn_metadata.query_start_loc[-1].
# Thus we need unpad it here.
num_tokens = attn_metadata.query_start_loc[-1]
query = query[:num_tokens]
output = self._forward_v1_style(query, attn_metadata, output)
# to make in-place change to the output tensor
if hasattr(layer, 'quant_method') and use_kv_cache_int8:
output = output.view(num_tokens, self.num_heads, self.head_size)
ori_output[:num_tokens, :, :] = output[:num_tokens, :, :]
return output.view(num_tokens, self.hidden_size)
def unified_ascend_attention_with_output(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
output: torch.Tensor,
layer_name: str,
) -> None:
wait_for_kv_layer_from_connector(layer_name)
forward_context: ForwardContext = get_forward_context()
attn_metadata = forward_context.attn_metadata
if isinstance(attn_metadata, dict):
attn_metadata = attn_metadata[layer_name]
self = forward_context.no_compile_layers[layer_name]
kv_cache = self.kv_cache[forward_context.virtual_engine]
self.impl.forward(self,
query,
key,
value,
kv_cache,
attn_metadata,
output,
trace_flag=False)
maybe_save_kv_layer_to_connector(layer_name, kv_cache)
return
def unified_attention_with_output_fake(
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
output: torch.Tensor,
layer_name: str,
) -> None:
return
direct_register_custom_op(
op_name="unified_ascend_attention_with_output",
op_func=unified_ascend_attention_with_output,
mutates_args=["output"],
fake_impl=unified_attention_with_output_fake,
dispatch_key="PrivateUse1",
)