mirror of
https://github.com/vllm-project/vllm-ascend.git
synced 2025-10-20 13:43:53 +08:00
### What this PR does / why we need it? Add initial experimental support for Ascend 310P, this patch squash below PR into one to help validation: - https://github.com/vllm-project/vllm-ascend/pull/914 - https://github.com/vllm-project/vllm-ascend/pull/1318 - https://github.com/vllm-project/vllm-ascend/pull/1327 ### Does this PR introduce _any_ user-facing change? User can run vLLM on Altlas 300I DUO series ### How was this patch tested? CI passed with: - E2E image build for 310P - CI test on A2 with e2e test and longterm test - Unit test missing because need a real 310P image to have the test, will add in a separate PR later. - Manually e2e test: - Qwen2.5-7b-instruct, Qwen2.5-0.5b, Qwen3-0.6B, Qwen3-4B, Qwen3-8B: https://github.com/vllm-project/vllm-ascend/pull/914#issuecomment-2942989322 - Pangu MGoE 72B The patch has been tested locally on Ascend 310P hardware to ensure that the changes do not break existing functionality and that the new features work as intended. #### ENV information CANN, NNAL version: 8.1.RC1 > [!IMPORTANT] > PTA 2.5.1 version >= torch_npu-2.5.1.post1.dev20250528 to support NZ format and calling NNAL operators on 310P #### Code example ##### Build vllm-ascend from source code ```shell # download source code as vllm-ascend cd vllm-ascend export SOC_VERSION=Ascend310P3 pip install -v -e . cd .. ``` ##### Run offline inference ```python from vllm import LLM, SamplingParams prompts = ["水的沸点是100摄氏度吗?请回答是或者否。", "若腋下体温为38摄氏度,请问这人是否发烧?请回答是或者否。", "水的沸点是100摄氏度吗?请回答是或者否。", "若腋下体温为38摄氏度,请问这人是否发烧?请回答是或者否。"] # Create a sampling params object. sampling_params = SamplingParams(temperature=0.0, top_p=0.95, max_tokens=10) # Create an LLM. llm = LLM( model="Qwen/Qwen2.5-7B-Instruct", max_model_len=4096, max_num_seqs=4, dtype="float16", # IMPORTANT cause some ATB ops cannot support bf16 on 310P disable_custom_all_reduce=True, trust_remote_code=True, tensor_parallel_size=2, compilation_config={"custom_ops":['none', "+rms_norm", "+rotary_embedding"]}, ) # Generate texts from the prompts. outputs = llm.generate(prompts, sampling_params) for output in outputs: prompt = output.prompt generated_text = output.outputs[0].text print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}") ``` --------- Signed-off-by: Vincent Yuan <farawayboat@gmail.com> Signed-off-by: Yikun Jiang <yikunkero@gmail.com> Signed-off-by: angazenn <zengyanjia@huawei.com> Co-authored-by: Vincent Yuan <farawayboat@gmail.com> Co-authored-by: angazenn <zengyanjia@huawei.com> Co-authored-by: wangxiyuan <wangxiyuan1007@gmail.com> Co-authored-by: leo-pony <nengjunma@outlook.com> Co-authored-by: shen-shanshan <467638484@qq.com>