Files
vllm-ascend/examples/disaggregated_prefill_v1/load_balance_proxy_server_example.py
Shirley125 b4233a2ec3 [Bugfix] Route requests requiring KVC recomputation from the decode instance to the P instance (#3448)
### What this PR does / why we need it?
This PR is aimed to fix the recomputing out of memory bug in decode
instance. When recomputing happens in decode, kv cache usage may exceed
the pre-allocated memory, and it will cause OOM.

So we propose a new scheduling strategy, when decode instance cannot
allocate new block for running requests, we will stop the request that
will be preempted. These stopped request will be recognied by proxy, and
they will be send to prefill instance again to calculate kvc and then
direct to decode instance.

This is a temporary plan to fix the bug. The long-term stratege is to
use CPU offload in decode instance.

### Does this PR introduce _any_ user-facing change?
An extra ascend configuration option **-- recompute_scheduler_enable =
True** is added to enable this strategy. The default value is False
### How was this patch tested?


- vLLM version: v0.11.0rc3
- vLLM main: https://github.com/vllm-project/vllm/commit/v0.11.0

---------

Signed-off-by: CHEN <116010019@link.cuhk.edu.cn>
2025-10-18 15:56:44 +08:00

652 lines
25 KiB
Python

# Adapted from https://github.com/vllm-project/vllm/tests/v1/kv_connector/nixl_integration/toy_proxy_server.py
# SPDX-License-Identifier: Apache-2.0
#
# Tutorial: Using the Load Balance Proxy Server Example
#
# This proxy server is designed to distribute requests between multiple
# "prefiller" and "decoder" backend servers for large language model inference.
# It is useful for scaling out inference workloads and balancing load across
# multiple backend instances.
#
# Features:
# - Load balances requests to multiple prefiller and decoder servers.
# - Supports OpenAI-compatible /v1/completions and /v1/chat/completions endpoints.
# - Streams responses from backend servers to clients.
#
# Prerequisites:
# - Python 3.8+
# - Install dependencies:
# pip install fastapi httpx uvicorn vllm
#
# Step 1: Start Your Backend Servers
# ----------------------------------
# You need to have at least one prefiller and one decoder backend running.
# These can be mock servers or actual vLLM servers.
#
# For testing, you can use the provided mock server:
#
# vllm serve --host 0.0.0.0 --port 8100 ... # Prefiller 1
# vllm serve --host 0.0.0.0 --port 8101 ... # Prefiller 2
# vllm serve --host 0.0.0.0 --port 8200 ... # Decoder 1
# vllm serve --host 0.0.0.0 --port 8201 ... # Decoder 2
#
# Step 2: Start the Proxy Server
# ------------------------------
# Run the proxy server, specifying the host/port for each prefiller and decoder:
#
# python load_balance_proxy_server_example.py \
# --host 0.0.0.0 --port 9000 \
# --prefiller-hosts 127.0.0.1 127.0.0.1 \
# --prefiller-ports 8100 8101 \
# --decoder-hosts 127.0.0.1 127.0.0.1 \
# --decoder-ports 8200 8201
#
# This will start the proxy on port 9000, load balancing between two prefiller
# and two decoder servers.
#
# Step 3: Send a Request to the Proxy
# -----------------------------------
# You can now send OpenAI-compatible requests to the proxy. For example:
#
# curl -X POST http://localhost:9000/v1/completions \
# -H "Content-Type: application/json" \
# -d '{
# "model": "your-model",
# "prompt": "The quick brown fox jumps over the lazy dog",
# "max_tokens": 16
# }'
#
# Or for chat completions:
#
# curl -X POST http://localhost:9000/v1/chat/completions \
# -H "Content-Type: application/json" \
# -d '{
# "model": "your-model",
# "messages": [{"role": "user", "content": "Hello!"}],
# "max_tokens": 16
# }'
#
# Step 4: Health Check
# --------------------
# To check if the proxy is running and see how many backend instances are
# connected, use:
#
# curl http://localhost:9000/healthcheck
#
# This will return a JSON object with the status and the number of prefiller
# and decoder instances.
#
# Notes:
# - You can scale the number of prefiller and decoder servers as needed.
# - The proxy will round-robin requests to balance load.
# - For production, ensure your backend servers are robust and secure.
#
# For more details, see the code and comments in this file.
import argparse
import asyncio
import functools
import heapq
import json
import os
import sys
import uuid
from contextlib import asynccontextmanager
from dataclasses import dataclass
from typing import Any, List
import httpx
from fastapi import FastAPI, Request
from fastapi.responses import StreamingResponse
from vllm.logger import init_logger
logger = init_logger(__name__)
# Add uvloop for faster event loop if available
try:
import uvloop
asyncio.set_event_loop_policy(uvloop.EventLoopPolicy())
except ImportError:
pass
class ServerState:
def __init__(self, host, port):
self.host = host
self.port = port
self.url = f'http://{host}:{port}/v1'
self.client = httpx.AsyncClient(timeout=None,
base_url=self.url,
limits=httpx.Limits(
max_connections=100000,
max_keepalive_connections=100000))
self.active_tokens = 0
self.active_kv_cache = 0 # Only for prefiller
self.active_requests = 0 # Number of active requests
self.aborted_requests = set() # Track aborted requests
# Removed individual server lock - will use global locks instead
class ProxyState:
def __init__(self, prefiller_instances, decoder_instances):
self.prefillers: List[ServerState] = [
ServerState(h, p) for h, p in prefiller_instances
]
self.decoders: List[ServerState] = [
ServerState(h, p) for h, p in decoder_instances
]
self.req_to_prefiller = {}
self.req_id_lock = asyncio.Lock()
# Removed selection locks - no longer needed for synchronous methods
# Initialize priority queues for efficient server selection
# Each entry is (priority_score, server_index, server_reference)
# Lower priority score = higher priority (less loaded)
self.prefiller_heap = [(0, i, server)
for i, server in enumerate(self.prefillers)]
self.decoder_heap = [(0, i, server)
for i, server in enumerate(self.decoders)]
heapq.heapify(self.prefiller_heap)
heapq.heapify(self.decoder_heap)
def _update_prefiller_priority(self, server_idx: int):
"""Update the priority of a prefiller server in the heap."""
server = self.prefillers[server_idx]
# Priority based on active_tokens and active_kv_cache
priority = server.active_tokens + server.active_kv_cache * 0.3
# Remove old entry and add new one
self.prefiller_heap = [(p, i, s) for p, i, s in self.prefiller_heap
if i != server_idx]
heapq.heappush(self.prefiller_heap,
(priority, server_idx, server)) # type: ignore
def _update_decoder_priority(self, server_idx: int):
"""Update the priority of a decoder server in the heap."""
server = self.decoders[server_idx]
priority = server.active_tokens
# Remove old entry and add new one
self.decoder_heap = [(p, i, s) for p, i, s in self.decoder_heap
if i != server_idx]
heapq.heappush(self.decoder_heap,
(priority, server_idx, server)) # type: ignore
def abort_prefiller_request(self, server_idx: int,
request_id): # Changed to synchronous
"""
Mark a request as aborted. This will helps to release kv cache in
prefiller node.
"""
# No lock needed - atomic operation
self.prefillers[server_idx].aborted_requests.add(request_id)
def aquire_aborted_prefiller_requests(
self, server_idx: int): # Changed to synchronous
"""
Get the set of aborted requests and clear it.
This is used to release kv cache in prefiller node.
"""
# No lock needed - atomic operation
aborted_requests = self.prefillers[server_idx].aborted_requests.copy()
self.prefillers[server_idx].aborted_requests.clear()
return aborted_requests
async def next_req_id(self):
async with self.req_id_lock:
return str(uuid.uuid4())
def select_prefiller(self, token_count): # Changed to synchronous
# No lock needed - entire function is atomic
if not self.prefiller_heap:
raise RuntimeError("No prefiller servers available")
priority, chosen, server = heapq.heappop(self.prefiller_heap)
# Update the chosen server atomically
self.prefillers[chosen].active_tokens += token_count
self.prefillers[chosen].active_kv_cache += token_count
# Update priority and re-add to heap
self._update_prefiller_priority(chosen)
return chosen
def release_prefiller(self, idx, token_count): # Changed to synchronous
# No lock needed - atomic operation
self.prefillers[idx].active_tokens -= token_count
# Update priority queue after releasing
self._update_prefiller_priority(idx)
def release_prefiller_kv(self, idx, token_count): # Changed to synchronous
# No lock needed - atomic operation
if self.prefillers[idx].active_kv_cache > 0:
self.prefillers[idx].active_kv_cache -= token_count
# Update priority queue after releasing
self._update_prefiller_priority(idx)
def select_decoder(self, token_count): # Changed to synchronous
# No lock needed - entire function is atomic
if not self.decoder_heap:
raise RuntimeError("No decoder servers available")
priority, chosen, server = heapq.heappop(self.decoder_heap)
# Update the chosen server atomically
self.decoders[chosen].active_tokens += token_count
# Update priority and re-add to heap
self._update_decoder_priority(chosen)
return chosen
def release_decoder(self, idx, token_count): # Changed to synchronous
# No lock needed - atomic operation
self.decoders[idx].active_tokens -= token_count
# Update priority queue after releasing
self._update_decoder_priority(idx)
# Omni_infer's calculate_input_scores function
def calculate_prefill_scores(self, request_length: int) -> float:
length_score = request_length / 4.0
input_score = length_score * 0.0345 + 120.0745
return input_score
def calculate_decode_scores(self, request_length: int) -> float:
return request_length
proxy_state = None
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--port", type=int, default=8000)
parser.add_argument("--host", type=str, default="localhost")
parser.add_argument("--prefiller-hosts",
type=str,
nargs="+",
default=["localhost"])
parser.add_argument("--prefiller-ports",
type=int,
nargs="+",
default=[8001])
parser.add_argument("--decoder-hosts",
type=str,
nargs="+",
default=["localhost"])
parser.add_argument("--decoder-ports", type=int, nargs="+", default=[8002])
parser.add_argument("--max-retries",
type=int,
default=3,
help="Maximum number of retries for HTTP requests")
parser.add_argument(
"--retry-delay",
type=float,
default=0.001,
help="Base delay (seconds) for exponential backoff retries")
args = parser.parse_args()
if len(args.prefiller_hosts) != len(args.prefiller_ports):
raise ValueError(
"Number of prefiller hosts must match number of prefiller ports")
if len(args.decoder_hosts) != len(args.decoder_ports):
raise ValueError(
"Number of decoder hosts must match number of decoder ports")
args.prefiller_instances = list(
zip(args.prefiller_hosts, args.prefiller_ports))
args.decoder_instances = list(zip(args.decoder_hosts, args.decoder_ports))
return args
@asynccontextmanager
async def lifespan(app: FastAPI):
global proxy_state
proxy_state = ProxyState(global_args.prefiller_instances,
global_args.decoder_instances)
print(
f"Initialized {len(proxy_state.prefillers)} prefill clients and {len(proxy_state.decoders)} decode clients."
)
yield
for p in proxy_state.prefillers:
await p.client.aclose()
for d in proxy_state.decoders:
await d.client.aclose()
async def listen_for_disconnect(request: Request) -> None:
"""Return if a disconnect message is received"""
while True:
message = await request.receive()
if message["type"] == "http.disconnect":
break
def with_cancellation(handler_func):
@functools.wraps(handler_func)
async def wrapper(*args, **kwargs):
request = kwargs["request"]
handler_task = asyncio.create_task(handler_func(*args, **kwargs))
cancellation_task = asyncio.create_task(listen_for_disconnect(request))
done, pending = await asyncio.wait([handler_task, cancellation_task],
return_when=asyncio.FIRST_COMPLETED)
for task in pending:
task.cancel()
if handler_task in done:
return handler_task.result()
return None
return wrapper
app = FastAPI(lifespan=lifespan)
async def send_request_to_service(client: httpx.AsyncClient,
prefiller_id: int,
endpoint: str,
req_data: dict,
request_id: str,
max_retries: int = 3,
base_delay: float = 0.2):
aborted_requests = proxy_state.aquire_aborted_prefiller_requests(
prefiller_id)
req_data = req_data.copy()
req_data['kv_transfer_params'] = {
"do_remote_decode": True,
"do_remote_prefill": False,
"remote_engine_id": None,
"remote_block_ids": None,
"remote_host": None,
"remote_port": None,
"aborted_request": list(aborted_requests),
}
req_data["stream"] = False
req_data["max_tokens"] = 1
req_data["min_tokens"] = 1
if "stream_options" in req_data:
del req_data["stream_options"]
headers = {
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}",
"X-Request-Id": request_id
}
last_exc = None
for attempt in range(1, max_retries + 1):
try:
response = await client.post(endpoint,
json=req_data,
headers=headers)
response.raise_for_status()
return response
except (httpx.RequestError, httpx.HTTPStatusError) as e:
logger.warning(
f"Attempt {attempt} failed for {endpoint}: {str(e)}")
last_exc = e
if attempt < max_retries:
await asyncio.sleep(base_delay * (2**(attempt - 1)))
else:
logger.error(
f"All {max_retries} attempts failed for {endpoint}.")
raise last_exc
async def stream_service_response_with_retry(client: httpx.AsyncClient,
endpoint: str,
req_data: dict,
request_id: str,
max_retries: int = 3,
base_delay: float = 0.2):
headers = {
"Authorization": f"Bearer {os.environ.get('OPENAI_API_KEY')}",
"X-Request-Id": request_id
}
for attempt in range(1, max_retries + 1):
try:
async with client.stream("POST",
endpoint,
json=req_data,
headers=headers) as response:
response.raise_for_status()
first_chunk_sent = False
async for chunk in response.aiter_bytes():
first_chunk_sent = True
yield chunk
return # Success, exit after streaming
except (httpx.RequestError, httpx.HTTPStatusError) as e:
if attempt < max_retries:
logger.warning(
f"Attempt {attempt} failed for streaming {endpoint}: {str(e)}"
)
await asyncio.sleep(base_delay * (2**(attempt - 1)))
else:
logger.error(
f"All {max_retries} attempts failed for streaming {endpoint}."
)
raise e
except Exception as e:
# If any chunk has been sent, do not retry, just log and drop
if 'first_chunk_sent' in locals() and first_chunk_sent:
logger.error(
f"Streaming to client interrupted after response started: {str(e)}"
)
return
else:
if attempt < max_retries:
logger.warning(
f"Attempt {attempt} failed for streaming {endpoint}: {str(e)}"
)
await asyncio.sleep(base_delay * (2**(attempt - 1)))
else:
logger.error(
f"All {max_retries} attempts failed for streaming {endpoint}."
)
raise e
async def _handle_select_instance(api: str, req_data: Any,
request_length: int):
prefiller_score = proxy_state.calculate_prefill_scores(request_length)
logger.debug(
f"Request length: {request_length}, Prefiller score: {prefiller_score}"
)
request_id = await proxy_state.next_req_id()
# Select prefiller
prefiller_idx = proxy_state.select_prefiller(prefiller_score)
prefiller = proxy_state.prefillers[prefiller_idx]
# Send request to prefiller
response = await send_request_to_service(
prefiller.client,
prefiller_idx,
api,
req_data,
request_id,
max_retries=global_args.max_retries,
base_delay=global_args.retry_delay)
proxy_state.release_prefiller(prefiller_idx, prefiller_score)
response_json = response.json()
kv_transfer_params = response_json.get('kv_transfer_params', {})
if kv_transfer_params:
req_data["kv_transfer_params"] = kv_transfer_params
# Select decoder
decoder_score = proxy_state.calculate_decode_scores(request_length)
logger.debug("Decoder score: %f", decoder_score)
# Use the prefiller's kv_transfer_params to select decoder
decoder_idx = proxy_state.select_decoder(decoder_score)
decoder = proxy_state.decoders[decoder_idx]
logger.debug("Using %s %s", prefiller.url, decoder.url)
return InstanceInfo(request_id=request_id,
prefiller_idx=prefiller_idx,
prefiller_score=prefiller_score,
prefiller=prefiller,
decoder=decoder,
decoder_idx=decoder_idx,
decoder_score=decoder_score)
@dataclass
class InstanceInfo:
request_id: str
prefiller_idx: int
prefiller_score: float
prefiller: ServerState
decoder_idx: int
decoder_score: float
decoder: ServerState
async def _handle_completions(api: str, request: Request):
try:
req_data = await request.json()
req_body = await request.body()
request_length = len(req_body)
instance_info = await _handle_select_instance(api, req_data,
request_length)
stream_flag = bool(req_data.get("stream", False))
chat_flag = "messages" in req_data
if "prompt" in req_data:
origin_prompt = req_data["prompt"]
elif chat_flag:
messages = req_data["messages"]
origin_prompt = messages[0].get("content", "")
else:
origin_prompt = ""
# refer to vLLM sampling_params: max_token default value
origin_max_tokens = req_data.get("max_tokens", 16)
async def generate_stream():
nonlocal instance_info
generated_token = ""
released_kv = False
retry_count = 0
retry = True
completion_tokens = 0
# Only one await per chunk, minimal logic in loop
try:
while retry:
retry = False
async for chunk in stream_service_response_with_retry(
instance_info.decoder.client,
api,
req_data,
request_id=instance_info.request_id,
max_retries=global_args.max_retries,
base_delay=global_args.retry_delay):
if not released_kv and chunk:
proxy_state.release_prefiller_kv(
instance_info.prefiller_idx,
instance_info.prefiller_score)
released_kv = True
chunk_str = chunk.decode("utf-8").strip()
if not chunk_str:
continue
if chunk_str.startswith("data: "):
chunk_str = chunk_str[len("data: "):]
try:
chunk_json = json.loads(chunk_str)
except json.JSONDecodeError:
# if chunk is [done], skip it.
logger.warning(
f"Skipping chunk: {chunk_str}")
yield chunk
continue
choices = chunk_json.get("choices", [])
if not choices:
yield chunk
continue
choice = choices[0]
delta = choice.get("delta") or {}
message = choice.get("message") or {}
content = (
delta.get("content")
or message.get("content")
or choice.get("text")
or ""
)
generated_token += content
stop_reason = choice.get(
"stop_reason")
usage = chunk_json.get("usage", {})
completion_tokens = (completion_tokens + 1) if stream_flag else \
(completion_tokens + usage.get("completion_tokens"))
if stop_reason == "recomputed":
retry = True
retry_count += 1
if chat_flag:
messages[0][
"content"] = origin_prompt + generated_token
else:
req_data[
"prompt"] = origin_prompt + generated_token
req_data[
"max_tokens"] = origin_max_tokens - completion_tokens + retry_count
tmp_request_length = len(
json.dumps(req_data).encode("utf-8"))
instance_info = await _handle_select_instance(
api, req_data, tmp_request_length)
break
if retry_count > 0 and not stream_flag:
if chat_flag:
choice["message"][
"content"] = generated_token
else:
choice["text"] = generated_token
chunk = json.dumps(chunk_json).encode("utf-8")
yield chunk
except Exception as e:
logger.error(
f"Error during streaming from decoder {instance_info.decoder.url}: {str(e)} the aborted request {instance_info.request_id} will be routing to the target prefiller when new request is ready to dispatch to it"
)
proxy_state.abort_prefiller_request(
instance_info.prefiller_idx, instance_info.request_id)
proxy_state.release_prefiller_kv(instance_info.prefiller_idx,
instance_info.prefiller_score)
# After streaming done, release tokens
proxy_state.release_decoder(instance_info.decoder_idx,
instance_info.decoder_score)
return StreamingResponse(generate_stream(),
media_type="application/json")
except Exception as e:
import traceback
exc_info = sys.exc_info()
print("Error occurred in disagg prefill proxy server"
f" - {api} endpoint")
print(e)
print("".join(traceback.format_exception(*exc_info)))
raise
@app.post("/v1/completions")
@with_cancellation
async def handle_completions(request: Request):
return await _handle_completions("/completions", request)
@app.post("/v1/chat/completions")
@with_cancellation
async def handle_chat_completions(request: Request):
return await _handle_completions("/chat/completions", request)
@app.get("/healthcheck")
async def healthcheck():
return {
"status": "ok",
"prefill_instances": len(proxy_state.prefillers),
"decode_instances": len(proxy_state.decoders)
}
if __name__ == '__main__':
global global_args
global_args = parse_args()
import uvicorn
uvicorn.run(app, host=global_args.host, port=global_args.port)