mirror of
https://github.com/vllm-project/vllm-ascend.git
synced 2025-10-20 13:43:53 +08:00
### What this PR does / why we need it? Add model basic accuracy test(Qwen2.5-0.5B-Instruct) Signed-off-by: hfadzxy <starmoon_zhang@163.com>
238 lines
9.9 KiB
Python
238 lines
9.9 KiB
Python
#
|
|
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
|
|
# Copyright 2023 The vLLM team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# This file is a part of the vllm-ascend project.
|
|
# Adapted from vllm-project/vllm/vllm/worker/gpu_worker.py
|
|
#
|
|
|
|
import gc
|
|
from typing import Dict, List, Optional
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch_npu
|
|
from vllm import envs
|
|
from vllm.config import VllmConfig
|
|
from vllm.distributed import (ensure_kv_transfer_initialized,
|
|
ensure_model_parallel_initialized,
|
|
init_distributed_environment,
|
|
set_custom_all_reduce)
|
|
from vllm.logger import logger
|
|
from vllm.model_executor import set_random_seed
|
|
from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE
|
|
from vllm.v1.core.sched.output import SchedulerOutput
|
|
from vllm.v1.kv_cache_interface import (FullAttentionSpec, KVCacheConfig,
|
|
KVCacheSpec)
|
|
from vllm.v1.outputs import ModelRunnerOutput
|
|
from vllm.v1.utils import bind_kv_cache
|
|
from vllm.v1.worker.worker_base import WorkerBase
|
|
|
|
from vllm_ascend.platform import NPUPlatform
|
|
from vllm_ascend.worker.model_runner_v1 import NPUModelRunner
|
|
|
|
|
|
class NPUWorker(WorkerBase):
|
|
|
|
def __init__(
|
|
self,
|
|
vllm_config: VllmConfig,
|
|
local_rank: int,
|
|
rank: int,
|
|
distributed_init_method: str,
|
|
is_driver_worker: bool = False,
|
|
# Additional parameters for compatibility with vllm
|
|
**kwargs):
|
|
"""Initialize the worker for Ascend."""
|
|
# register patch for vllm
|
|
from vllm_ascend.utils import adapt_patch
|
|
adapt_patch()
|
|
# Register ops when worker init.
|
|
from vllm_ascend import ops # noqa: F401
|
|
|
|
super().__init__(vllm_config=vllm_config,
|
|
local_rank=local_rank,
|
|
rank=rank,
|
|
distributed_init_method=distributed_init_method,
|
|
is_driver_worker=is_driver_worker)
|
|
if self.cache_config.cache_dtype == "auto":
|
|
self.cache_dtype = self.model_config.dtype
|
|
else:
|
|
self.cache_dtype = STR_DTYPE_TO_TORCH_DTYPE[
|
|
self.cache_config.cache_dtype]
|
|
|
|
if self.model_config.trust_remote_code:
|
|
# note: lazy import to avoid importing torch before initializing
|
|
from vllm.utils import init_cached_hf_modules
|
|
init_cached_hf_modules()
|
|
|
|
self.profiler = self._init_profiler()
|
|
|
|
def init_device(self):
|
|
if self.device_config.device.type == "npu":
|
|
self.device = torch.device(f"npu:{self.local_rank}")
|
|
NPUPlatform.set_device(self.device)
|
|
NPUPlatform.empty_cache()
|
|
self.init_npu_memory = NPUPlatform.mem_get_info()[0]
|
|
else:
|
|
info = f"Not support device type: {self.device_config.device}"
|
|
logger.error(info)
|
|
raise RuntimeError(info)
|
|
# Initialize the distributed environment.
|
|
self._init_worker_distributed_environment()
|
|
# Set random seed.
|
|
set_random_seed(self.model_config.seed)
|
|
|
|
# Init ModelRunner here, so that we have access to self.device.
|
|
self.model_runner = NPUModelRunner(self.vllm_config, self.device)
|
|
|
|
def determine_available_memory(self) -> int:
|
|
kv_caches: Dict[str, torch.Tensor] = {}
|
|
kv_cache_spec = self.model_runner.get_kv_cache_spec()
|
|
for layer_name, layer_spec in kv_cache_spec.items():
|
|
if isinstance(layer_spec, FullAttentionSpec):
|
|
# Use an empty tensor instead of `None`` to force Dynamo to pass
|
|
# it by reference, rather by specializing on the value ``None``.
|
|
npu_k_cache = torch.tensor([],
|
|
dtype=layer_spec.dtype,
|
|
device=self.device)
|
|
npu_v_cache = torch.tensor([],
|
|
dtype=layer_spec.dtype,
|
|
device=self.device)
|
|
kv_caches[layer_name] = (npu_k_cache, npu_v_cache)
|
|
else:
|
|
raise NotImplementedError
|
|
|
|
runner_kv_caches: List[torch.Tensor] = []
|
|
bind_kv_cache(
|
|
kv_caches,
|
|
self.vllm_config.compilation_config.static_forward_context,
|
|
runner_kv_caches)
|
|
|
|
# Profile the memory usage of the model and get the maximum number of
|
|
# cache blocks that can be allocated with the remaining free memory.
|
|
NPUPlatform.empty_cache()
|
|
|
|
# Execute a forward pass with dummy inputs to profile the memory usage
|
|
# of the model.
|
|
self.model_runner.profile_run()
|
|
|
|
# Calculate the number of blocks that can be allocated with the
|
|
# profiled peak memory.
|
|
free_npu_memory, total_npu_memory = NPUPlatform.mem_get_info()
|
|
# NOTE(woosuk): Here we assume that the other processes using the same
|
|
# GPU did not change their memory usage during the profiling.
|
|
peak_memory = self.init_npu_memory - free_npu_memory
|
|
assert peak_memory > 0, (
|
|
"Error in memory profiling. "
|
|
f"Initial free memory {self.init_npu_memory}, current free memory"
|
|
f" {free_npu_memory}. This happens when the NPU memory was "
|
|
"not properly cleaned up before initializing the vLLM instance.")
|
|
|
|
gc.collect()
|
|
# TODO: don`t need impl this func after empty_cache in
|
|
# Worker.determine_num_available_blocks() unified`
|
|
NPUPlatform.empty_cache()
|
|
usable_memory_size = total_npu_memory * self.cache_config.gpu_memory_utilization - peak_memory
|
|
npu_kv_cache_bytes = max(usable_memory_size, 0)
|
|
logger.info(
|
|
f"Available memory: {usable_memory_size}, total memory: {total_npu_memory}"
|
|
)
|
|
return int(npu_kv_cache_bytes)
|
|
|
|
def execute_model(
|
|
self,
|
|
scheduler_output: "SchedulerOutput",
|
|
) -> Optional[ModelRunnerOutput]:
|
|
output = self.model_runner.execute_model(scheduler_output)
|
|
return output if self.rank == 0 else None
|
|
|
|
def load_model(self) -> None:
|
|
self.model_runner.load_model()
|
|
|
|
def compile_or_warm_up_model(self) -> None:
|
|
if not self.model_config.enforce_eager:
|
|
logger.warning("Graph capture is not supported on NPU.")
|
|
# Reset the seed to ensure that the random state is not affected by
|
|
# the model initialization and profiling.
|
|
set_random_seed(self.model_config.seed)
|
|
|
|
def get_model(self) -> nn.Module:
|
|
return self.model_runner.get_model()
|
|
|
|
def get_kv_cache_spec(self) -> dict[str, KVCacheSpec]:
|
|
return self.model_runner.get_kv_cache_spec()
|
|
|
|
def initialize_from_config(self, kv_cache_config: KVCacheConfig) -> None:
|
|
"""Allocate NPU KV cache with the specified kv_cache_config."""
|
|
self.model_runner.initialize_kv_cache(kv_cache_config)
|
|
|
|
def initialize_cache(self, kv_cache_configs: List[KVCacheConfig]) -> None:
|
|
"""Allocate GPU KV cache with the specified kv_cache_config."""
|
|
kv_cache_config = kv_cache_configs[self.rank]
|
|
self.model_runner.initialize_kv_cache(kv_cache_config)
|
|
|
|
def profile(self, is_start: bool = True):
|
|
if self.profiler is None:
|
|
raise RuntimeError("Profiler is not enabled.")
|
|
if is_start:
|
|
self.profiler.start()
|
|
else:
|
|
self.profiler.stop()
|
|
|
|
def _init_worker_distributed_environment(self) -> None:
|
|
"""Initialize the distributed environment."""
|
|
set_custom_all_reduce(
|
|
not self.parallel_config.disable_custom_all_reduce)
|
|
init_distributed_environment(self.parallel_config.world_size,
|
|
self.rank, self.distributed_init_method,
|
|
self.local_rank, "hccl")
|
|
ensure_model_parallel_initialized(
|
|
self.parallel_config.tensor_parallel_size,
|
|
self.parallel_config.pipeline_parallel_size)
|
|
ensure_kv_transfer_initialized(self.vllm_config)
|
|
|
|
def _init_profiler(self):
|
|
# Torch profiler. Enabled and configured through env vars:
|
|
# VLLM_TORCH_PROFILER_DIR=/path/to/save/trace
|
|
if envs.VLLM_TORCH_PROFILER_DIR:
|
|
torch_profiler_trace_dir = envs.VLLM_TORCH_PROFILER_DIR
|
|
logger.info("Profiling enabled. Traces will be saved to: %s",
|
|
torch_profiler_trace_dir)
|
|
|
|
experimental_config = torch_npu.profiler._ExperimentalConfig(
|
|
export_type=torch_npu.profiler.ExportType.Text,
|
|
profiler_level=torch_npu.profiler.ProfilerLevel.Level0,
|
|
msprof_tx=False,
|
|
aic_metrics=torch_npu.profiler.AiCMetrics.AiCoreNone,
|
|
l2_cache=False,
|
|
op_attr=False,
|
|
data_simplification=False,
|
|
record_op_args=False,
|
|
gc_detect_threshold=None,
|
|
)
|
|
|
|
return torch_npu.profiler.profile(
|
|
activities=[
|
|
torch_npu.profiler.ProfilerActivity.CPU,
|
|
torch_npu.profiler.ProfilerActivity.NPU,
|
|
],
|
|
with_stack=True,
|
|
profile_memory=True,
|
|
with_modules=True,
|
|
experimental_config=experimental_config,
|
|
on_trace_ready=torch_npu.profiler.tensorboard_trace_handler(
|
|
torch_profiler_trace_dir))
|
|
else:
|
|
return None |