Files
vllm-ascend/vllm_ascend/worker/model_runner_v1.py
hfadzxy 9935d45728 [CI]Add model basic accuracy test(Qwen2.5-0.5B-Instruct) (#460)
### What this PR does / why we need it?
Add model basic accuracy test(Qwen2.5-0.5B-Instruct)

Signed-off-by: hfadzxy <starmoon_zhang@163.com>
2025-04-17 14:59:56 +08:00

782 lines
35 KiB
Python

#
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
# Copyright 2023 The vLLM team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This file is a part of the vllm-ascend project.
# Adapted from vllm-project/vllm/vllm/worker/gpu_model_runner.py
#
import gc
import os
from typing import TYPE_CHECKING, Dict, List, Optional, Union
import numpy as np
import numpy.typing as npt
import torch
import torch.nn as nn
from vllm.attention import AttentionType
from vllm.attention.layer import Attention
from vllm.config import VllmConfig
from vllm.distributed.parallel_state import get_pp_group
from vllm.forward_context import set_forward_context
from vllm.inputs import INPUT_REGISTRY
from vllm.logger import logger
from vllm.model_executor.layers.fused_moe import FusedMoE
from vllm.model_executor.model_loader import get_model
from vllm.multimodal import MULTIMODAL_REGISTRY, MultiModalKwargs
from vllm.sampling_params import SamplingType
from vllm.sequence import IntermediateTensors
from vllm.utils import DeviceMemoryProfiler, LayerBlockType, cdiv
from vllm.v1.core.encoder_cache_manager import compute_encoder_budget
from vllm.v1.kv_cache_interface import (FullAttentionSpec, KVCacheConfig,
KVCacheSpec)
from vllm.v1.outputs import EMPTY_MODEL_RUNNER_OUTPUT, ModelRunnerOutput
from vllm.v1.utils import bind_kv_cache
from vllm.v1.worker.gpu_input_batch import CachedRequestState, InputBatch
from vllm_ascend.attention.attention_v1 import (AscendAttentionBackend,
AscendMetadata)
from vllm_ascend.platform import NPUPlatform
if TYPE_CHECKING:
from vllm.v1.core.sched.output import SchedulerOutput
NPU_PAGED_ATTENTION_MASK_VALUE = -10000
class NPUModelRunner:
def __init__(self, vllm_config: VllmConfig, device: torch.device):
self.vllm_config = vllm_config
self.model_config = vllm_config.model_config
self.lora_config = vllm_config.lora_config
self.scheduler_config = vllm_config.scheduler_config
self.device = device
self.is_multimodal_model = self.model_config.is_multimodal_model
self.block_size = vllm_config.cache_config.block_size
self.max_num_blocks_per_req = cdiv(self.model_config.max_model_len,
self.block_size)
self.max_num_tokens = self.scheduler_config.max_num_batched_tokens
self.max_num_reqs = self.scheduler_config.max_num_seqs
# Model-related.
self.num_attn_layers = self.model_config.get_num_layers_by_block_type(
vllm_config.parallel_config, LayerBlockType.attention)
self.hidden_size = self.model_config.get_hidden_size()
# Multi-modal data support
self.input_registry = INPUT_REGISTRY
self.mm_registry = MULTIMODAL_REGISTRY
self.uses_mrope = self.model_config.uses_mrope
self.max_num_encoder_input_tokens, self.encoder_cache_size = compute_encoder_budget(
model_config=self.model_config,
scheduler_config=self.scheduler_config,
mm_registry=self.mm_registry)
# Lazy initialization
# self.model: nn.Module # Set after load_model
self.kv_caches: List[torch.Tensor] = []
# req_id -> (input_id -> encoder_output)
self.encoder_cache: Dict[str, Dict[int, torch.Tensor]] = {}
# Request states.
self.requests: Dict[str, CachedRequestState] = {}
# Persistent batch.
self.input_batch = InputBatch(
max_num_reqs=self.max_num_reqs,
max_model_len=self.model_config.max_model_len,
max_num_blocks_per_req=self.max_num_blocks_per_req,
device=self.device,
pin_memory=True,
vocab_size=self.model_config.get_vocab_size(),
)
self.input_ids = torch.zeros(self.max_num_tokens,
dtype=torch.int32,
device=self.device)
self.positions = torch.zeros(self.max_num_tokens,
dtype=torch.int64,
device=self.device)
# None in the first PP rank. The rest are set after load_model.
self.intermediate_tensors: Optional[IntermediateTensors] = None
# Only relevant for models using M-RoPE (e.g, Qwen2-VL)
if self.uses_mrope:
# NOTE: `mrope_positions` is implemented with one additional dummy
# position on purpose to make it non-contiguous so that it can work
# with torch compile.
# See detailed explanation in https://github.com/vllm-project/vllm/pull/12128#discussion_r1926431923
# NOTE: When M-RoPE is enabled, position ids are 3D regardless of
# the modality of inputs. For text-only inputs, each dimension has
# identical position IDs, making M-RoPE functionally equivalent to
# 1D-RoPE.
# See page 5 of https://arxiv.org/abs/2409.12191
self.mrope_positions = torch.zeros((3, self.max_num_tokens + 1),
dtype=torch.int64,
device=self.device)
self.mrope_positions_cpu = torch.zeros(
(3, self.max_num_tokens + 1),
dtype=torch.int64,
device="cpu",
pin_memory=True)
self.inputs_embeds = torch.zeros(
(self.max_num_tokens, self.hidden_size),
dtype=self.model_config.dtype,
device=self.device)
# OPTIMIZATION: Cache the tensors rather than creating them every step.
self.arange_np: npt.NDArray[np.int32] = np.arange(max(
self.max_num_reqs + 1, self.model_config.max_model_len,
self.max_num_tokens),
dtype=np.int32)
# NOTE(woosuk): These tensors are "stateless", i.e., they are literally
# a faster version of creating a new tensor every time. Thus, we should
# not make any assumptions about the values in these tensors.
self.input_ids_cpu = torch.zeros(self.max_num_tokens,
dtype=torch.int32,
device="cpu",
pin_memory=True)
self.positions_cpu = torch.zeros(self.max_num_tokens,
dtype=torch.int64,
device="cpu",
pin_memory=True)
self.positions_np = self.positions_cpu.numpy()
self.slot_mapping_cpu = torch.zeros(self.max_num_tokens,
dtype=torch.int32,
device="cpu",
pin_memory=True)
self.slot_mapping_np = self.slot_mapping_cpu.numpy()
self.seq_lens_cpu = torch.zeros(self.max_num_reqs,
dtype=torch.int32,
device="cpu",
pin_memory=True)
self.seq_lens_np = self.seq_lens_cpu.numpy()
self.input_positions_cpu = torch.arange(0,
self.max_num_tokens,
device="cpu")
# NOTE: Pre-construct a mask matrix to improve the efficiency of
# attention mask construction during inference.
# Note that the length of the matrix needs to be carefully balanced: a
# matrix that is too large will consume excessive VRAM, while a matrix
# that is too small will require dynamic concatenation during inference,
# leading to performance degradation.
# Therefore, an environment variable is added here to dynamically set
# the size of the pre-constructed mask matrix based on requirements.
mask_len = os.getenv("PAGED_ATTENTION_MASK_LEN", 10000)
self.attn_mask_len = min(self.model_config.max_model_len,
int(mask_len))
self.attn_mask_npu = torch.full(
(self.attn_mask_len, self.attn_mask_len),
NPU_PAGED_ATTENTION_MASK_VALUE,
device=self.device,
dtype=self.vllm_config.model_config.dtype)
self.attn_mask_npu.masked_fill_(
self.attn_mask_npu.tril() == NPU_PAGED_ATTENTION_MASK_VALUE, 0)
def _update_states(self, scheduler_output: "SchedulerOutput") -> None:
"""Update the cached states and the persistent batch with the scheduler
output.
The SamplingMetadata is updated and copied to the NPU if there is a
new/resumed/paused/finished request in the batch.
"""
# Remove finished requests from the cached states.
for req_id in scheduler_output.finished_req_ids:
self.requests.pop(req_id, None)
# Remove the finished requests from the persistent batch.
# NOTE(woosuk): There could be an edge case where finished_req_ids and
# scheduled_req_ids overlap. This happens when a request is aborted and
# then resubmitted with the same ID. In this case, we treat them as two
# distinct requests - clearing the cached states for the first request
# and handling the second as a new request.
removed_req_indices: List[int] = []
for req_id in scheduler_output.finished_req_ids:
req_index = self.input_batch.remove_request(req_id)
if req_index is not None:
removed_req_indices.append(req_index)
# Remove the unscheduled requests from the persistent batch.
# NOTE(woosuk): The unscheduled requests are either preempted requests
# or running requests that are not scheduled in this step. We remove
# them from the persistent batch but keep their cached states since
# they will be scheduled again sometime in the future.
scheduled_req_ids = scheduler_output.num_scheduled_tokens.keys()
cached_req_ids = self.input_batch.req_id_to_index.keys()
unscheduled_req_ids = cached_req_ids - scheduled_req_ids
# NOTE(woosuk): The persistent batch optimization assumes that
# consecutive batches contain mostly the same requests. If batches
# have low request overlap (e.g., alternating between two distinct
# sets of requests), this optimization becomes very inefficient.
for req_id in unscheduled_req_ids:
req_index = self.input_batch.remove_request(req_id)
assert req_index is not None
removed_req_indices.append(req_index)
req_ids_to_add: List[str] = []
# Add new requests to the cached states.
for new_req_data in scheduler_output.scheduled_new_reqs:
req_id = new_req_data.req_id
sampling_params = new_req_data.sampling_params
if sampling_params.sampling_type == SamplingType.RANDOM_SEED:
generator = torch.Generator(device=self.device)
generator.manual_seed(sampling_params.seed)
else:
generator = None
self.requests[req_id] = CachedRequestState(
req_id=req_id,
prompt_token_ids=new_req_data.prompt_token_ids,
prompt=new_req_data.prompt,
mm_inputs=new_req_data.mm_inputs,
mm_positions=new_req_data.mm_positions,
sampling_params=sampling_params,
generator=generator,
block_ids=new_req_data.block_ids,
num_computed_tokens=new_req_data.num_computed_tokens,
output_token_ids=[],
lora_request=new_req_data.lora_request,
)
req_ids_to_add.append(req_id)
# Update the states of the running/resumed requests.
for req_data in scheduler_output.scheduled_cached_reqs:
req_id = req_data.req_id
req_state = self.requests[req_id]
# Update the cached states.
num_computed_tokens = req_data.num_computed_tokens
req_state.num_computed_tokens = num_computed_tokens
# Add the sampled token(s) from the previous step (if any).
# This doesn't include "unverified" tokens like spec decode tokens.
num_new_tokens = (num_computed_tokens +
len(req_data.new_token_ids) -
req_state.num_tokens)
if num_new_tokens == 1:
# Avoid slicing list in most common case.
req_state.output_token_ids.append(req_data.new_token_ids[-1])
elif num_new_tokens > 0:
req_state.output_token_ids.extend(
req_data.new_token_ids[-num_new_tokens:])
# Update the block IDs.
if not req_data.resumed_from_preemption:
# Append the new blocks to the existing block IDs.
req_state.block_ids.extend(req_data.new_block_ids)
else:
# The request is resumed from preemption.
# Replace the existing block IDs with the new ones.
req_state.block_ids = req_data.new_block_ids
req_index = self.input_batch.req_id_to_index.get(req_id)
if req_index is None:
# The request is not in the persistent batch.
# The request was either preempted and resumed later, or was not
# scheduled in the previous step and needs to be added again.
req_ids_to_add.append(req_id)
continue
# Update the persistent batch.
self.input_batch.num_computed_tokens_cpu[req_index] = (
num_computed_tokens)
start_index = (len(req_state.block_ids) -
len(req_data.new_block_ids))
self.input_batch.block_table.append_row(req_data.new_block_ids,
req_index)
# Add new_token_ids to token_ids_cpu.
start_token_index = num_computed_tokens
end_token_index = num_computed_tokens + len(req_data.new_token_ids)
self.input_batch.token_ids_cpu[
req_index,
start_token_index:end_token_index] = req_data.new_token_ids
self.input_batch.num_tokens_no_spec[req_index] = end_token_index
# Add spec_token_ids to token_ids_cpu.
spec_token_ids = scheduler_output.scheduled_spec_decode_tokens.get(
req_id, ())
if spec_token_ids:
start_index = end_token_index
end_token_index += len(spec_token_ids)
self.input_batch.token_ids_cpu[
req_index, start_index:end_token_index] = spec_token_ids
# NOTE(woosuk): `num_tokens` here may include spec decode tokens.
self.input_batch.num_tokens[req_index] = end_token_index
# Check if the batch has changed. If not, we can skip copying the
# sampling metadata from CPU to GPU.
batch_changed = len(removed_req_indices) > 0 or len(req_ids_to_add) > 0
# Add the new or resumed requests to the persistent batch.
# The smaller empty indices are filled first.
removed_req_indices = sorted(removed_req_indices, reverse=True)
for req_id in req_ids_to_add:
req_state = self.requests[req_id]
if removed_req_indices:
# Fill the empty index.
req_index = removed_req_indices.pop()
else:
# Append to the end.
req_index = None
self.input_batch.add_request(req_state, req_index)
# Condense the batched states if there are empty indices.
if removed_req_indices:
self.input_batch.condense(removed_req_indices)
if batch_changed:
self.input_batch.refresh_sampling_metadata()
def get_model(self) -> nn.Module:
return self.model
def _make_attention_mask(self, seq_lens, query_lens,
position) -> torch.Tensor:
max_seq_len = max(seq_lens, default=0)
if max_seq_len <= self.attn_mask_len:
return torch.index_select(self.attn_mask_npu,
dim=0,
index=position)[:, :max_seq_len]
total_q_len = sum(query_lens)
attn_mask = torch.zeros((total_q_len, max_seq_len),
dtype=self.vllm_config.model_config.dtype,
device="cpu")
current_row = 0
for i in range(len(query_lens)):
seq_len = seq_lens[i]
q_len = query_lens[i]
context_len = seq_len - q_len
assert context_len >= 0
attn_mask[current_row:current_row + q_len,
context_len:] = NPU_PAGED_ATTENTION_MASK_VALUE
right_tensor = attn_mask[current_row:current_row + q_len,
context_len:seq_len]
right_tensor.mask_fill_(
right_tensor.tril() == NPU_PAGED_ATTENTION_MASK_VALUE, 0)
current_row += q_len
return attn_mask.to(self.device, non_blocking=True)
def _process_reqs(
self,
scheduler_output: "SchedulerOutput",
intermediate_tensors: Optional[IntermediateTensors] = None,
) -> torch.Tensor:
# Check input valid
total_num_scheduled_tokens = scheduler_output.total_num_scheduled_tokens
assert total_num_scheduled_tokens > 0
num_reqs = self.input_batch.num_reqs
assert num_reqs > 0
# Copy the blocks from CPU to NPU.
# OPTIMIZATION: Start copying the block table first.
# This way, we can overlap the copy with the following CPU operations.
self.input_batch.block_table.commit(num_reqs)
# Get the number of scheduled tokens for each request.
# TODO: The Python loop can be slow. Optimize.
num_scheduled_tokens = np.empty(num_reqs, dtype=np.int32)
max_num_scheduled_tokens = 0
for i, req_id in enumerate(self.input_batch.req_ids):
num_tokens = scheduler_output.num_scheduled_tokens[req_id]
num_scheduled_tokens[i] = num_tokens
max_num_scheduled_tokens = max(max_num_scheduled_tokens,
num_tokens)
# Prepare positions
req_indices = np.repeat(self.arange_np[:num_reqs],
num_scheduled_tokens)
cu_num_tokens = np.cumsum(num_scheduled_tokens)
cumsums_offsets = np.repeat(cu_num_tokens - num_scheduled_tokens,
num_scheduled_tokens)
arange = self.arange_np[:total_num_scheduled_tokens] - cumsums_offsets
positions_np = self.positions_np[:total_num_scheduled_tokens]
np.add(self.input_batch.num_computed_tokens_cpu[req_indices],
arange,
out=positions_np)
self.positions[:total_num_scheduled_tokens].copy_(
self.positions_cpu[:total_num_scheduled_tokens], non_blocking=True)
positions = self.positions[:total_num_scheduled_tokens]
self.seq_lens_np[:num_reqs] = (
self.input_batch.num_computed_tokens_cpu[:num_reqs] +
num_scheduled_tokens)
seq_lens = self.seq_lens_cpu[:num_reqs]
query_lens = torch.from_numpy(num_scheduled_tokens)
block_table_indices = (req_indices * self.max_num_blocks_per_req +
positions_np // self.block_size)
block_table_cpu = self.input_batch.block_table.get_cpu_tensor()
block_numbers = block_table_cpu.flatten()[block_table_indices].numpy()
block_offsets = positions_np % self.block_size
np.add(block_numbers * self.block_size,
block_offsets,
out=self.slot_mapping_np[:total_num_scheduled_tokens])
slot_mapping = self.slot_mapping_cpu[:total_num_scheduled_tokens].to(
self.device, non_blocking=True)
attn_mask = self._make_attention_mask(seq_lens=seq_lens,
query_lens=num_scheduled_tokens,
position=positions)
attn_metadata = AscendMetadata(
seq_lens=query_lens,
context_lens=seq_lens,
slot_mapping=slot_mapping,
block_tables=(
self.input_batch.block_table.get_device_tensor()[:num_reqs]),
attn_mask=attn_mask,
)
# Prepare input_ids
token_indices = (positions_np +
req_indices * self.input_batch.token_ids_cpu.shape[1])
torch.index_select(self.input_batch.token_ids_cpu_tensor.flatten(),
0,
torch.from_numpy(token_indices),
out=self.input_ids_cpu[:total_num_scheduled_tokens])
# Copy the tensors to the NPU.
self.input_ids[:total_num_scheduled_tokens].copy_(
self.input_ids_cpu[:total_num_scheduled_tokens], non_blocking=True)
input_ids = self.input_ids[:total_num_scheduled_tokens]
# Run forward pass
with set_forward_context(attn_metadata, self.vllm_config):
assert self.model is not None
hidden_states = self.model(
input_ids=input_ids,
positions=positions,
intermediate_tensors=intermediate_tensors,
inputs_embeds=None,
)
return hidden_states[cu_num_tokens - 1]
@torch.inference_mode()
def execute_model(
self,
scheduler_output: "SchedulerOutput",
intermediate_tensors: Optional[IntermediateTensors] = None,
) -> Union[ModelRunnerOutput, torch.Tensor]:
self._update_states(scheduler_output)
if not scheduler_output.total_num_scheduled_tokens:
# Return empty ModelRunnerOuptut if there's no work to do.
return EMPTY_MODEL_RUNNER_OUTPUT
hidden_states = self._process_reqs(scheduler_output,
intermediate_tensors)
logits = self.model.compute_logits(hidden_states, None)
# Sample the next token and get logprobs if needed.
sampling_metadata = self.input_batch.sampling_metadata
sampler_output = self.model.sample(
logits=logits,
sampling_metadata=sampling_metadata,
)
# TODO(woosuk): The following loop can be slow since it iterates over
# the requests one by one. Optimize.
for i, req_id in enumerate(self.input_batch.req_ids):
req_state = self.requests[req_id]
seq_len = (req_state.num_computed_tokens +
scheduler_output.num_scheduled_tokens[req_id])
if seq_len < req_state.num_tokens:
# Ignore the sampled token.
# Rewind the generator state as if the token was not sampled.
generator = self.input_batch.generators.get(i)
if generator is not None:
generator.set_offset(generator.get_offset() - 4)
# NOTE: NPU -> CPU Sync happens here.
# Move as many CPU operations as possible before this sync point.
logprobs_tensors = sampler_output.logprobs_tensors
logprobs_lists = logprobs_tensors.tolists() \
if logprobs_tensors is not None else None
# Get the valid generated tokens.
sampled_token_ids = sampler_output.sampled_token_ids
max_gen_len = sampled_token_ids.shape[-1]
if max_gen_len == 1:
# No spec decode tokens.
valid_sampled_token_ids = sampled_token_ids.tolist()
model_runner_output = ModelRunnerOutput(
req_ids=self.input_batch.req_ids,
req_id_to_index=self.input_batch.req_id_to_index,
sampled_token_ids=valid_sampled_token_ids,
spec_token_ids=None,
logprobs=logprobs_lists,
prompt_logprobs_dict={},
)
return model_runner_output
def _profile_multimodal(self) -> None:
# TODO: handle encoder-decoder models once we support them.
# NOTE: Currently model is profiled with a single non-text
# modality with the max possible input tokens even when
# it supports multiple.
if (not self.is_multimodal_model
or self.max_num_encoder_input_tokens <= 0
or self.encoder_cache_size <= 0):
return
max_tokens_by_modality_dict = (
MULTIMODAL_REGISTRY.get_max_tokens_per_item_by_nonzero_modality(
self.model_config))
dummy_data_modality, max_tokens_per_mm_item = max(
max_tokens_by_modality_dict.items(), key=lambda item: item[1])
# Check how many items of this modality can be supported by
# the encoder budget.
encoder_budget = min(self.max_num_encoder_input_tokens,
self.encoder_cache_size)
max_num_mm_items_encoder_budget = cdiv(encoder_budget,
max_tokens_per_mm_item)
# Check how many items of this modality can be supported by
# the decoder budget.
max_mm_items_per_req = self.mm_registry.get_mm_limits_per_prompt(
self.model_config)[dummy_data_modality]
# NOTE: We do not consider max_num_batched_tokens on purpose
# because the multimodal embeddings can be generated in advance
# and chunked prefilled.
max_num_mm_items_decoder_budget = self.max_num_reqs * \
max_mm_items_per_req
max_num_mm_items = min(max_num_mm_items_encoder_budget,
max_num_mm_items_decoder_budget)
logger.info(
"Encoder cache will be initialized with a budget of %s tokens,"
" and profiled with %s %s items of the maximum feature size.",
encoder_budget, max_num_mm_items, dummy_data_modality)
# Create dummy batch of multimodal inputs.
dummy_request_data = self.input_registry.dummy_data_for_profiling(
model_config=self.model_config,
seq_len=self.max_num_tokens,
mm_registry=self.mm_registry,
)
dummy_mm_data = dummy_request_data.multi_modal_data
if not isinstance(dummy_mm_data, MultiModalKwargs):
# TODO: Delete this check once input mapper is fully removed.
raise RuntimeError("Legacy input mapper is not supported in V1")
# Dummy data definition in V0 may contain multiple multimodal items
# (e.g, multiple images) for a single request, therefore here we
# always replicate first item by max_num_mm_items times since in V1
# they are scheduled to be processed separately.
dummy_mm_item = dummy_mm_data.get_item(modality=dummy_data_modality,
item_index=0)
dummy_mm_kwargs = MultiModalKwargs.from_items([dummy_mm_item])
batched_dummy_mm_inputs = MultiModalKwargs.batch([dummy_mm_kwargs] *
max_num_mm_items)
batched_dummy_mm_inputs = MultiModalKwargs.as_kwargs(
batched_dummy_mm_inputs, device=self.device)
# Run multimodal encoder.
dummy_encoder_outputs = self.model.get_multimodal_embeddings(
**batched_dummy_mm_inputs)
assert len(dummy_encoder_outputs) == max_num_mm_items, (
"Expected dimension 0 of encoder outputs to match the number "
f"of multimodal data items: {max_num_mm_items}, got "
f"{len(dummy_encoder_outputs)=} instead. This is most likely "
"due to the 'get_multimodal_embeddings' method of the model "
"not implemented correctly.")
# Cache the dummy encoder outputs.
self.encoder_cache["tmp"] = dict(enumerate(dummy_encoder_outputs))
@torch.inference_mode()
def _dummy_run(self) -> torch.Tensor:
model = self.model
if self.is_multimodal_model:
input_ids = None
inputs_embeds = self.inputs_embeds[:self.max_num_tokens]
else:
input_ids = self.input_ids[:self.max_num_tokens]
inputs_embeds = None
if self.uses_mrope:
positions = self.mrope_positions[:, :self.max_num_tokens]
else:
positions = self.input_positions_cpu[:self.max_num_tokens]
if get_pp_group().is_first_rank:
intermediate_tensors = None
else:
if self.intermediate_tensors is None:
self.intermediate_tensors = (
self.model.make_empty_intermediate_tensors(
batch_size=self.max_num_tokens,
dtype=self.model_config.dtype,
device=self.device))
intermediate_tensors = IntermediateTensors({
k: v[:self.max_num_tokens]
for k, v in self.intermediate_tensors.items()
})
with set_forward_context(None, self.vllm_config):
hidden_states = model(input_ids=input_ids,
positions=positions.to(self.device),
intermediate_tensors=intermediate_tensors,
inputs_embeds=inputs_embeds)
return hidden_states
def profile_run(self) -> None:
# Profile with multimodal encoder & encoder cache.
self._profile_multimodal()
# For profile, have maximum num_reqs and that collectively have
# maximum num_tokens.
num_reqs = self.scheduler_config.max_num_seqs
num_tokens = self.max_num_tokens
min_tokens_per_req = num_tokens // num_reqs
num_scheduled_tokens_list = [min_tokens_per_req] * num_reqs
num_scheduled_tokens_list[-1] += num_tokens % num_reqs
assert sum(num_scheduled_tokens_list) == num_tokens
assert len(num_scheduled_tokens_list) == num_reqs
num_scheduled_tokens = np.array(num_scheduled_tokens_list,
dtype=np.int32)
logit_indices = np.cumsum(num_scheduled_tokens) - 1
# assert self.lora_manager is not None, "LoRA is not enabled"
# TODO: call maybe_profile_with_lora()
dummy_kv_caches = [
torch.tensor((), dtype=torch.float32, device=self.device)
for _ in range(self.num_attn_layers)
]
# Trigger compilation for general shape.
hidden_states = self._dummy_run()
if get_pp_group().is_last_rank:
hidden_states = hidden_states[logit_indices]
logits = self.model.compute_logits(hidden_states, None)
else:
logits = None
NPUPlatform.synchronize()
del hidden_states, logits, dummy_kv_caches
self.encoder_cache.clear()
gc.collect()
def load_model(self) -> None:
logger.info("Starting to load model %s...", self.model_config.model)
with DeviceMemoryProfiler() as m: # noqa: SIM117
self.model = get_model(vllm_config=self.vllm_config)
if self.lora_config:
raise ValueError("LoRA model is not supported on NPU now.")
logger.info("Loading model weights took %.4f GB",
m.consumed_memory / float(2**30))
def initialize_kv_cache(self, kv_cache_config: KVCacheConfig) -> None:
"""
Initialize KV cache based on `kv_cache_config`.
Args:
kv_cache_config: Configuration for the KV cache, including the KV
cache size of each layer
"""
kv_caches: Dict[str, torch.Tensor] = {}
for kv_cache_group in kv_cache_config.kv_cache_groups:
kv_cache_spec = kv_cache_group.kv_cache_spec
for layer_name in kv_cache_group.layer_names:
tensor_config = kv_cache_config.tensors[layer_name]
assert tensor_config.size % kv_cache_spec.page_size_bytes == 0
num_blocks = tensor_config.size // kv_cache_spec.page_size_bytes
# `num_blocks` is the number of blocks the model runner can use.
# `kv_cache_config.num_blocks` is the number of blocks that
# KVCacheManager may allocate.
# Since different GPUs may have different number of layers and
# different memory capacities, `num_blocks` can be different on
# different GPUs, and `kv_cache_config.num_blocks` is set to
# the min of all `num_blocks`. Verify it here.
assert num_blocks >= kv_cache_config.num_blocks
if isinstance(kv_cache_spec, FullAttentionSpec):
kv_cache_shape = AscendAttentionBackend.get_kv_cache_shape(
num_blocks, kv_cache_spec.block_size,
kv_cache_spec.num_kv_heads, kv_cache_spec.head_size)
dtype = kv_cache_spec.dtype
kv_caches[layer_name] = torch.zeros(kv_cache_shape,
dtype=dtype,
device=self.device)
else:
# TODO: add new branches when introducing more types of
# KV cache specs.
raise ValueError("Unknown KV cache spec type.")
bind_kv_cache(
kv_caches,
self.vllm_config.compilation_config.static_forward_context,
self.kv_caches)
def get_kv_cache_spec(self) -> dict[str, KVCacheSpec]:
"""
Generates the KVCacheSpec by parsing the kv cache format from each
Attention module in the static forward context.
Returns:
KVCacheSpec: A dictionary mapping layer names to their KV cache
format. Layers that do not need KV cache are not included.
"""
forward_ctx = self.vllm_config.compilation_config.static_forward_context
block_size = self.vllm_config.cache_config.block_size
use_mla = self.vllm_config.model_config.use_mla
kv_cache_spec: dict[str, KVCacheSpec] = {}
for layer_name, attn_module in forward_ctx.items():
if isinstance(attn_module, FusedMoE):
continue
# TODO: Support other attention modules, e.g., sliding window,
# cross-attention
assert isinstance(attn_module, Attention)
if attn_module.attn_type == AttentionType.DECODER:
kv_cache_spec[layer_name] = FullAttentionSpec(
block_size=block_size,
num_kv_heads=attn_module.num_kv_heads,
head_size=attn_module.head_size,
dtype=attn_module.dtype,
use_mla=use_mla)
elif attn_module.attn_type in (AttentionType.ENCODER,
AttentionType.ENCODER_ONLY):
# encoder-only attention does not need KV cache.
continue
elif attn_module.attn_type == AttentionType.ENCODER_DECODER:
raise NotImplementedError
else:
raise ValueError(
f"Unknown attention type: {attn_module.attn_type}")
return kv_cache_spec