Files
vllm-ascend/vllm_ascend/utils.py
hfadzxy 9935d45728 [CI]Add model basic accuracy test(Qwen2.5-0.5B-Instruct) (#460)
### What this PR does / why we need it?
Add model basic accuracy test(Qwen2.5-0.5B-Instruct)

Signed-off-by: hfadzxy <starmoon_zhang@163.com>
2025-04-17 14:59:56 +08:00

86 lines
2.8 KiB
Python

#
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
# Copyright 2023 The vLLM team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This file is a part of the vllm-ascend project.
# Adapted from vllm-project/vllm/vllm/worker/worker.py
#
import torch
import torch_npu # noqa: F401
from vllm.logger import logger
import vllm_ascend.envs as envs
def try_register_lib(lib_name: str, lib_info: str = ""):
import importlib
import importlib.util
try:
module_spec = importlib.util.find_spec(lib_name)
if module_spec is not None:
importlib.import_module(lib_name)
if lib_info:
logger.info(lib_info)
except Exception:
pass
def find_hccl_library() -> str:
"""
We either use the library file specified by the `HCCL_SO_PATH`
environment variable, or we find the library file brought by PyTorch.
After importing `torch`, `libhccl.so` can be
found by `ctypes` automatically.
"""
so_file = envs.HCCL_SO_PATH
# manually load the hccl library
if so_file:
logger.info("Found hccl from environment variable HCCL_SO_PATH=%s",
so_file)
else:
if torch.version.cann is not None:
so_file = "libhccl.so"
else:
raise ValueError("HCCL only supports Ascend NPU backends.")
logger.info("Found hccl from library %s", so_file)
return so_file
_current_stream = None
def current_stream() -> torch.npu.Stream:
"""
replace `torch.npu.current_stream()` with `vllm.utils.current_stream()`.
it turns out that `torch.npu.current_stream()` is quite expensive,
as it will construct a new stream object at each call.
here we patch `torch.npu.set_stream` to keep track of the current stream
directly, so that we can avoid calling `torch.npu.current_stream()`.
"""
global _current_stream
if _current_stream is None:
# when this function is called before any stream is set,
# we return the default stream.
_current_stream = torch.npu.current_stream()
return _current_stream
def adapt_patch(is_global_patch: bool = False):
if is_global_patch:
from vllm_ascend.patch import platform # noqa: F401
else:
from vllm_ascend.patch import worker # noqa: F401