Files
vllm-ascend/vllm_ascend/quantization/quant_config.py
hfadzxy 9935d45728 [CI]Add model basic accuracy test(Qwen2.5-0.5B-Instruct) (#460)
### What this PR does / why we need it?
Add model basic accuracy test(Qwen2.5-0.5B-Instruct)

Signed-off-by: hfadzxy <starmoon_zhang@163.com>
2025-04-17 14:59:56 +08:00

378 lines
16 KiB
Python

#
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
# Copyright 2023 The vLLM team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This file is a part of the vllm-ascend project.
#
from types import MappingProxyType
from typing import Any, Callable, Dict, List, Mapping, Optional
import torch
import torch_npu # noqa: F401
from vllm.distributed import get_tensor_model_parallel_rank
from vllm.model_executor.layers.fused_moe import (FusedMoE, FusedMoEMethodBase,
FusedMoeWeightScaleSupported)
from vllm.model_executor.layers.fused_moe.layer import \
UnquantizedFusedMoEMethod
from vllm.model_executor.layers.linear import (LinearBase, LinearMethodBase,
RowParallelLinear,
UnquantizedLinearMethod)
from vllm.model_executor.layers.quantization import \
register_quantization_config
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig, QuantizeMethodBase)
from vllm.model_executor.layers.quantization.kv_cache import BaseKVCacheMethod
from vllm.model_executor.parameter import (ChannelQuantScaleParameter,
ModelWeightParameter,
PerTensorScaleParameter)
from vllm.model_executor.utils import set_weight_attrs
from .quantizer import AscendQuantizer
@register_quantization_config("ascend")
class AscendQuantConfig(QuantizationConfig):
"""Config class for Ascend
This class is a general class that parse quantization configs
that are supported on ascend hardware.
"""
def __init__(self, quant_config: Dict[str, Any]):
self.quant_description = quant_config
def __repr__(self) -> str:
return "AscendQuantConfig:\n" + super().__repr__()
@classmethod
def get_name(cls) -> str:
return "ascend"
@classmethod
def get_supported_act_dtypes(cls) -> List[torch.dtype]:
return [torch.int8, torch.float16, torch.bfloat16]
@classmethod
def get_min_capability(cls) -> int:
raise NotImplementedError(
"Ascend hardware dose not support \"get_min_capability\" feature.")
@classmethod
def get_config_filenames(cls) -> List[str]:
return []
@classmethod
def from_config(cls, config: Dict[str, Any]) -> "AscendQuantConfig":
return cls(config)
@classmethod
def override_quantization_method(cls, hf_quant_cfg,
user_quant) -> Optional[str]:
if torch.npu.is_available():
return "ascend"
return None
def get_quant_method(self, layer: torch.nn.Module,
prefix: str) -> Optional["QuantizeMethodBase"]:
from vllm.attention.layer import Attention
if isinstance(layer, LinearBase):
if self.is_layer_skipped_ascend(prefix,
self.packed_modules_mapping):
return UnquantizedLinearMethod()
return AscendLinearMethod(self, prefix,
self.packed_modules_mapping)
elif isinstance(layer, Attention) and \
'fa_quant_type' in self.quant_description.keys() and \
self.quant_description['fa_quant_type'] is not None:
return AscendKVCacheMethod(self, prefix)
elif isinstance(layer, FusedMoE):
if self.is_layer_skipped_ascend(prefix,
self.packed_modules_mapping):
return UnquantizedFusedMoEMethod()
return AscendFusedMoEMethod(self, prefix,
self.packed_modules_mapping)
return None
def is_layer_skipped_ascend(
self,
prefix: str,
fused_mapping: Mapping[str, List[str]] = MappingProxyType({})):
# adapted from vllm.model_executor.layers.quantization.utils.quant_utils.is_layer_skipped
proj_name = prefix.split(".")[-1]
if proj_name in fused_mapping:
shard_prefixes = [
prefix.replace(proj_name, shard_proj_name)
for shard_proj_name in fused_mapping[proj_name]
]
is_skipped = None
for shard_prefix in shard_prefixes:
is_shard_skipped = self.quant_description[shard_prefix +
'.weight'] == "FLOAT"
if is_skipped is None:
is_skipped = is_shard_skipped
elif is_shard_skipped != is_skipped:
raise ValueError(
f"Detected some but not all shards of {prefix} "
"are quantized. All shards of fused layers "
"to have the same precision.")
else:
is_skipped = self.quant_description[prefix + '.weight'] == "FLOAT"
assert is_skipped is not None
return is_skipped
def get_scaled_act_names(self) -> List[str]:
return []
class AscendLinearMethod(LinearMethodBase):
"""Linear method for Ascend quantization.
This class calls AscendQuantizer to search a specific quantization
implementations supported on ascend hardware for linear methods.
Args:
quant_config: The Ascend quantization config.
"""
def __init__(self, quant_config: AscendQuantConfig, prefix: str,
packed_modules_mapping: Dict[str, Any]) -> None:
self.quantizer = AscendQuantizer.get_quantizer(
quant_config.quant_description, prefix, packed_modules_mapping)
self.quant_method = self.quantizer.build_linear_method()
def create_weights(
self,
layer: torch.nn.Module,
input_size_per_partition: int,
output_partition_sizes: List[int],
input_size: int,
output_size: int,
params_dtype: torch.dtype,
**extra_weight_attrs,
) -> None:
output_size_per_partition = sum(output_partition_sizes)
weight_loader = extra_weight_attrs.get("weight_loader")
weight_dict = self.quant_method.get_weight(input_size_per_partition,
output_size_per_partition,
params_dtype)
for weight_name, weight_param in weight_dict.items():
layer.register_parameter(
weight_name,
ModelWeightParameter(data=weight_param,
input_dim=1,
output_dim=0,
weight_loader=weight_loader))
pertensor_dict = self.quant_method.get_pertensor_param(params_dtype)
for pertensor_name, pertensor_param in pertensor_dict.items():
param = PerTensorScaleParameter(data=pertensor_param,
weight_loader=weight_loader)
# disable warning
param.ignore_warning = True
layer.register_parameter(pertensor_name, param)
perchannel_dict = self.quant_method.get_perchannel_param(
output_size_per_partition, params_dtype)
for perchannel_name, perchannel_param in perchannel_dict.items():
layer.register_parameter(
perchannel_name,
ChannelQuantScaleParameter(data=perchannel_param,
output_dim=0,
weight_loader=weight_loader))
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
if hasattr(self.quant_method, "process_weights_after_loading"):
self.quant_method.process_weights_after_loading(layer)
def apply(
self,
layer: torch.nn.Module,
x: torch.Tensor,
bias: Optional[torch.Tensor] = None,
) -> torch.Tensor:
if isinstance(layer, RowParallelLinear):
tp_rank = get_tensor_model_parallel_rank()
return self.quant_method.apply(layer, x, bias, tp_rank)
return self.quant_method.apply(layer, x, bias)
class AscendKVCacheMethod(BaseKVCacheMethod):
"""KVCache method for Ascend quantization.
This class calls AscendQuantizer to search a specific quantization
implementations supported on ascend hardware for kvcache methods.
Args:
quant_config: The Ascend quantization config.
"""
def __init__(self, quant_config: AscendQuantConfig, prefix: str) -> None:
self.quantizer = AscendQuantizer.get_quantizer(
quant_config.quant_description, prefix)
self.quant_method = self.quantizer.build_attention_method()
def create_weights(self, layer: torch.nn.Module) -> None:
# Different from linear method, there are no weight processing/slicing
# steps for attention in vllm. So the whole process of create weights
# is hidden into the specific quant method.
self.quant_method.create_weights(layer)
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
if hasattr(self.quant_method, "process_weights_after_loading"):
self.quant_method.process_weights_after_loading(layer)
def apply(self,
layer: torch.nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
k_cache: List[torch.Tensor],
v_cache: List[torch.Tensor],
scale: torch.Tensor,
block_tables: torch.Tensor,
isPrefill: bool,
attn_metadata,
output,
seq_lens_tensor_cpu: Optional[int] = None) -> torch.Tensor:
return self.quant_method.apply(layer,
query,
key,
value,
k_cache,
v_cache,
scale,
block_tables,
isPrefill,
attn_metadata.attn_mask,
attn_metadata.slot_mapping,
output,
seq_lens_tensor_cpu=seq_lens_tensor_cpu)
def fused_moe_perchannel_weight_loader(param: torch.nn.Parameter,
loaded_weight: torch.Tensor,
weight_name: str, shard_id: str,
expert_id: int) -> None:
if shard_id not in ("w1", "w2", "w3"):
raise ValueError(f"shard_id must be ['w1','w2','w3'] but "
f"got {shard_id}.")
# Fetch the dim to shard the parameter/loaded weight
# based on the shard id. This will be whatever
# dimension intermediate_size_per_partition is used.
SHARD_ID_TO_SHARDED_DIM = {"w1": 0, "w2": 1, "w3": 0}
expert_data = param.data[expert_id]
tp_rank = get_tensor_model_parallel_rank()
# is_transposed: if the dim to shard the weight
# should be flipped. Required by GPTQ, compressed-tensors
# should be whatever dimension intermediate_size_per_partition is
is_transposed = getattr(param, "is_transposed", False)
shard_dim = SHARD_ID_TO_SHARDED_DIM[shard_id]
if is_transposed:
shard_dim = int(not shard_dim)
if shard_id == "w2":
expert_data.copy_(loaded_weight)
elif shard_id in ("w1", "w3"):
shard_size = expert_data.shape[shard_dim] // 2
loaded_weight = loaded_weight.narrow(shard_dim, shard_size * tp_rank,
shard_size)
# Narrow parameter and load.
# w1, gate_proj: Load into first logical weight of w13.
if shard_id == "w1":
expert_data = expert_data.narrow(shard_dim, 0, shard_size)
# w3, up_proj: Load into second logical weight of w13.
else:
assert shard_id == "w3"
expert_data = expert_data.narrow(shard_dim, shard_size, shard_size)
expert_data.copy_(loaded_weight)
class AscendFusedMoEMethod(FusedMoEMethodBase):
"""FusedMoE method for Ascend quantization.
This class calls AscendQuantizer to search a specific quantization
implementations supported on ascend hardware for kvcache methods.
Args:
quant_config: The Ascend quantization config.
"""
def __init__(self, quant_config: AscendQuantConfig, prefix: str,
packed_modules_mapping: Dict[str, Any]):
self.quantizer = AscendQuantizer.get_quantizer(
quant_config.quant_description, prefix, packed_modules_mapping)
self.quant_method = self.quantizer.build_moe_method()
def create_weights(
self,
layer: torch.nn.Module,
num_experts: int,
hidden_size: int,
intermediate_size_per_partition: int,
params_dtype: torch.dtype,
**extra_weight_attrs,
) -> None:
weight_param = self.quant_method.get_weight(
num_experts, intermediate_size_per_partition, hidden_size,
params_dtype)
for param_key, param_value in weight_param.items():
param = torch.nn.Parameter(param_value, requires_grad=False)
layer.register_parameter(param_key, param)
set_weight_attrs(param, extra_weight_attrs)
extra_weight_attrs.update(
{"quant_method": FusedMoeWeightScaleSupported.CHANNEL.value})
# load `offset` weight in `fused_moe_perchannel_weight_loader`, the original weight load in vllm 0.7.3 could only load `scale` and `zero`
extra_weight_attrs.update(
{"weight_loader": fused_moe_perchannel_weight_loader})
dynamic_quant_param = self.quant_method.get_dynamic_quant_param(
num_experts, intermediate_size_per_partition, hidden_size,
params_dtype)
for param_key, param_value in dynamic_quant_param.items():
param = torch.nn.Parameter(param_value, requires_grad=False)
layer.register_parameter(param_key, param)
set_weight_attrs(param, extra_weight_attrs)
def apply(
self,
layer: torch.nn.Module,
x: torch.Tensor,
use_grouped_topk: bool,
top_k: int,
router_logits: torch.Tensor,
renormalize: bool,
topk_group: Optional[int] = None,
num_expert_group: Optional[int] = None,
custom_routing_function: Optional[Callable] = None,
scoring_func: str = "softmax",
e_score_correction_bias: Optional[torch.Tensor] = None
) -> torch.Tensor:
return self.quant_method.apply(layer, x, use_grouped_topk, top_k,
router_logits, renormalize, topk_group,
num_expert_group,
custom_routing_function, scoring_func,
e_score_correction_bias)
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
if hasattr(self.quant_method, "process_weights_after_loading"):
self.quant_method.process_weights_after_loading(layer)