mirror of
https://github.com/vllm-project/vllm-ascend.git
synced 2025-10-20 13:43:53 +08:00
### What this PR does / why we need it? Add model basic accuracy test(Qwen2.5-0.5B-Instruct) Signed-off-by: hfadzxy <starmoon_zhang@163.com>
378 lines
16 KiB
Python
378 lines
16 KiB
Python
#
|
|
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
|
|
# Copyright 2023 The vLLM team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# This file is a part of the vllm-ascend project.
|
|
#
|
|
from types import MappingProxyType
|
|
from typing import Any, Callable, Dict, List, Mapping, Optional
|
|
|
|
import torch
|
|
import torch_npu # noqa: F401
|
|
from vllm.distributed import get_tensor_model_parallel_rank
|
|
from vllm.model_executor.layers.fused_moe import (FusedMoE, FusedMoEMethodBase,
|
|
FusedMoeWeightScaleSupported)
|
|
from vllm.model_executor.layers.fused_moe.layer import \
|
|
UnquantizedFusedMoEMethod
|
|
from vllm.model_executor.layers.linear import (LinearBase, LinearMethodBase,
|
|
RowParallelLinear,
|
|
UnquantizedLinearMethod)
|
|
from vllm.model_executor.layers.quantization import \
|
|
register_quantization_config
|
|
from vllm.model_executor.layers.quantization.base_config import (
|
|
QuantizationConfig, QuantizeMethodBase)
|
|
from vllm.model_executor.layers.quantization.kv_cache import BaseKVCacheMethod
|
|
from vllm.model_executor.parameter import (ChannelQuantScaleParameter,
|
|
ModelWeightParameter,
|
|
PerTensorScaleParameter)
|
|
from vllm.model_executor.utils import set_weight_attrs
|
|
|
|
from .quantizer import AscendQuantizer
|
|
|
|
|
|
@register_quantization_config("ascend")
|
|
class AscendQuantConfig(QuantizationConfig):
|
|
"""Config class for Ascend
|
|
|
|
This class is a general class that parse quantization configs
|
|
that are supported on ascend hardware.
|
|
"""
|
|
|
|
def __init__(self, quant_config: Dict[str, Any]):
|
|
self.quant_description = quant_config
|
|
|
|
def __repr__(self) -> str:
|
|
return "AscendQuantConfig:\n" + super().__repr__()
|
|
|
|
@classmethod
|
|
def get_name(cls) -> str:
|
|
return "ascend"
|
|
|
|
@classmethod
|
|
def get_supported_act_dtypes(cls) -> List[torch.dtype]:
|
|
return [torch.int8, torch.float16, torch.bfloat16]
|
|
|
|
@classmethod
|
|
def get_min_capability(cls) -> int:
|
|
raise NotImplementedError(
|
|
"Ascend hardware dose not support \"get_min_capability\" feature.")
|
|
|
|
@classmethod
|
|
def get_config_filenames(cls) -> List[str]:
|
|
return []
|
|
|
|
@classmethod
|
|
def from_config(cls, config: Dict[str, Any]) -> "AscendQuantConfig":
|
|
return cls(config)
|
|
|
|
@classmethod
|
|
def override_quantization_method(cls, hf_quant_cfg,
|
|
user_quant) -> Optional[str]:
|
|
if torch.npu.is_available():
|
|
return "ascend"
|
|
return None
|
|
|
|
def get_quant_method(self, layer: torch.nn.Module,
|
|
prefix: str) -> Optional["QuantizeMethodBase"]:
|
|
from vllm.attention.layer import Attention
|
|
if isinstance(layer, LinearBase):
|
|
if self.is_layer_skipped_ascend(prefix,
|
|
self.packed_modules_mapping):
|
|
return UnquantizedLinearMethod()
|
|
return AscendLinearMethod(self, prefix,
|
|
self.packed_modules_mapping)
|
|
elif isinstance(layer, Attention) and \
|
|
'fa_quant_type' in self.quant_description.keys() and \
|
|
self.quant_description['fa_quant_type'] is not None:
|
|
return AscendKVCacheMethod(self, prefix)
|
|
elif isinstance(layer, FusedMoE):
|
|
if self.is_layer_skipped_ascend(prefix,
|
|
self.packed_modules_mapping):
|
|
return UnquantizedFusedMoEMethod()
|
|
return AscendFusedMoEMethod(self, prefix,
|
|
self.packed_modules_mapping)
|
|
return None
|
|
|
|
def is_layer_skipped_ascend(
|
|
self,
|
|
prefix: str,
|
|
fused_mapping: Mapping[str, List[str]] = MappingProxyType({})):
|
|
# adapted from vllm.model_executor.layers.quantization.utils.quant_utils.is_layer_skipped
|
|
proj_name = prefix.split(".")[-1]
|
|
if proj_name in fused_mapping:
|
|
shard_prefixes = [
|
|
prefix.replace(proj_name, shard_proj_name)
|
|
for shard_proj_name in fused_mapping[proj_name]
|
|
]
|
|
|
|
is_skipped = None
|
|
for shard_prefix in shard_prefixes:
|
|
is_shard_skipped = self.quant_description[shard_prefix +
|
|
'.weight'] == "FLOAT"
|
|
|
|
if is_skipped is None:
|
|
is_skipped = is_shard_skipped
|
|
elif is_shard_skipped != is_skipped:
|
|
raise ValueError(
|
|
f"Detected some but not all shards of {prefix} "
|
|
"are quantized. All shards of fused layers "
|
|
"to have the same precision.")
|
|
else:
|
|
is_skipped = self.quant_description[prefix + '.weight'] == "FLOAT"
|
|
|
|
assert is_skipped is not None
|
|
return is_skipped
|
|
|
|
def get_scaled_act_names(self) -> List[str]:
|
|
return []
|
|
|
|
|
|
class AscendLinearMethod(LinearMethodBase):
|
|
"""Linear method for Ascend quantization.
|
|
|
|
This class calls AscendQuantizer to search a specific quantization
|
|
implementations supported on ascend hardware for linear methods.
|
|
|
|
Args:
|
|
quant_config: The Ascend quantization config.
|
|
"""
|
|
|
|
def __init__(self, quant_config: AscendQuantConfig, prefix: str,
|
|
packed_modules_mapping: Dict[str, Any]) -> None:
|
|
self.quantizer = AscendQuantizer.get_quantizer(
|
|
quant_config.quant_description, prefix, packed_modules_mapping)
|
|
self.quant_method = self.quantizer.build_linear_method()
|
|
|
|
def create_weights(
|
|
self,
|
|
layer: torch.nn.Module,
|
|
input_size_per_partition: int,
|
|
output_partition_sizes: List[int],
|
|
input_size: int,
|
|
output_size: int,
|
|
params_dtype: torch.dtype,
|
|
**extra_weight_attrs,
|
|
) -> None:
|
|
output_size_per_partition = sum(output_partition_sizes)
|
|
weight_loader = extra_weight_attrs.get("weight_loader")
|
|
|
|
weight_dict = self.quant_method.get_weight(input_size_per_partition,
|
|
output_size_per_partition,
|
|
params_dtype)
|
|
for weight_name, weight_param in weight_dict.items():
|
|
layer.register_parameter(
|
|
weight_name,
|
|
ModelWeightParameter(data=weight_param,
|
|
input_dim=1,
|
|
output_dim=0,
|
|
weight_loader=weight_loader))
|
|
|
|
pertensor_dict = self.quant_method.get_pertensor_param(params_dtype)
|
|
for pertensor_name, pertensor_param in pertensor_dict.items():
|
|
param = PerTensorScaleParameter(data=pertensor_param,
|
|
weight_loader=weight_loader)
|
|
# disable warning
|
|
param.ignore_warning = True
|
|
layer.register_parameter(pertensor_name, param)
|
|
|
|
perchannel_dict = self.quant_method.get_perchannel_param(
|
|
output_size_per_partition, params_dtype)
|
|
for perchannel_name, perchannel_param in perchannel_dict.items():
|
|
layer.register_parameter(
|
|
perchannel_name,
|
|
ChannelQuantScaleParameter(data=perchannel_param,
|
|
output_dim=0,
|
|
weight_loader=weight_loader))
|
|
|
|
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
|
|
if hasattr(self.quant_method, "process_weights_after_loading"):
|
|
self.quant_method.process_weights_after_loading(layer)
|
|
|
|
def apply(
|
|
self,
|
|
layer: torch.nn.Module,
|
|
x: torch.Tensor,
|
|
bias: Optional[torch.Tensor] = None,
|
|
) -> torch.Tensor:
|
|
if isinstance(layer, RowParallelLinear):
|
|
tp_rank = get_tensor_model_parallel_rank()
|
|
return self.quant_method.apply(layer, x, bias, tp_rank)
|
|
return self.quant_method.apply(layer, x, bias)
|
|
|
|
|
|
class AscendKVCacheMethod(BaseKVCacheMethod):
|
|
"""KVCache method for Ascend quantization.
|
|
|
|
This class calls AscendQuantizer to search a specific quantization
|
|
implementations supported on ascend hardware for kvcache methods.
|
|
|
|
Args:
|
|
quant_config: The Ascend quantization config.
|
|
"""
|
|
|
|
def __init__(self, quant_config: AscendQuantConfig, prefix: str) -> None:
|
|
self.quantizer = AscendQuantizer.get_quantizer(
|
|
quant_config.quant_description, prefix)
|
|
self.quant_method = self.quantizer.build_attention_method()
|
|
|
|
def create_weights(self, layer: torch.nn.Module) -> None:
|
|
# Different from linear method, there are no weight processing/slicing
|
|
# steps for attention in vllm. So the whole process of create weights
|
|
# is hidden into the specific quant method.
|
|
self.quant_method.create_weights(layer)
|
|
|
|
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
|
|
if hasattr(self.quant_method, "process_weights_after_loading"):
|
|
self.quant_method.process_weights_after_loading(layer)
|
|
|
|
def apply(self,
|
|
layer: torch.nn.Module,
|
|
query: torch.Tensor,
|
|
key: torch.Tensor,
|
|
value: torch.Tensor,
|
|
k_cache: List[torch.Tensor],
|
|
v_cache: List[torch.Tensor],
|
|
scale: torch.Tensor,
|
|
block_tables: torch.Tensor,
|
|
isPrefill: bool,
|
|
attn_metadata,
|
|
output,
|
|
seq_lens_tensor_cpu: Optional[int] = None) -> torch.Tensor:
|
|
return self.quant_method.apply(layer,
|
|
query,
|
|
key,
|
|
value,
|
|
k_cache,
|
|
v_cache,
|
|
scale,
|
|
block_tables,
|
|
isPrefill,
|
|
attn_metadata.attn_mask,
|
|
attn_metadata.slot_mapping,
|
|
output,
|
|
seq_lens_tensor_cpu=seq_lens_tensor_cpu)
|
|
|
|
|
|
def fused_moe_perchannel_weight_loader(param: torch.nn.Parameter,
|
|
loaded_weight: torch.Tensor,
|
|
weight_name: str, shard_id: str,
|
|
expert_id: int) -> None:
|
|
|
|
if shard_id not in ("w1", "w2", "w3"):
|
|
raise ValueError(f"shard_id must be ['w1','w2','w3'] but "
|
|
f"got {shard_id}.")
|
|
|
|
# Fetch the dim to shard the parameter/loaded weight
|
|
# based on the shard id. This will be whatever
|
|
# dimension intermediate_size_per_partition is used.
|
|
SHARD_ID_TO_SHARDED_DIM = {"w1": 0, "w2": 1, "w3": 0}
|
|
|
|
expert_data = param.data[expert_id]
|
|
tp_rank = get_tensor_model_parallel_rank()
|
|
|
|
# is_transposed: if the dim to shard the weight
|
|
# should be flipped. Required by GPTQ, compressed-tensors
|
|
# should be whatever dimension intermediate_size_per_partition is
|
|
is_transposed = getattr(param, "is_transposed", False)
|
|
shard_dim = SHARD_ID_TO_SHARDED_DIM[shard_id]
|
|
if is_transposed:
|
|
shard_dim = int(not shard_dim)
|
|
|
|
if shard_id == "w2":
|
|
expert_data.copy_(loaded_weight)
|
|
elif shard_id in ("w1", "w3"):
|
|
shard_size = expert_data.shape[shard_dim] // 2
|
|
loaded_weight = loaded_weight.narrow(shard_dim, shard_size * tp_rank,
|
|
shard_size)
|
|
# Narrow parameter and load.
|
|
# w1, gate_proj: Load into first logical weight of w13.
|
|
if shard_id == "w1":
|
|
expert_data = expert_data.narrow(shard_dim, 0, shard_size)
|
|
# w3, up_proj: Load into second logical weight of w13.
|
|
else:
|
|
assert shard_id == "w3"
|
|
expert_data = expert_data.narrow(shard_dim, shard_size, shard_size)
|
|
expert_data.copy_(loaded_weight)
|
|
|
|
|
|
class AscendFusedMoEMethod(FusedMoEMethodBase):
|
|
"""FusedMoE method for Ascend quantization.
|
|
|
|
This class calls AscendQuantizer to search a specific quantization
|
|
implementations supported on ascend hardware for kvcache methods.
|
|
|
|
Args:
|
|
quant_config: The Ascend quantization config.
|
|
"""
|
|
|
|
def __init__(self, quant_config: AscendQuantConfig, prefix: str,
|
|
packed_modules_mapping: Dict[str, Any]):
|
|
self.quantizer = AscendQuantizer.get_quantizer(
|
|
quant_config.quant_description, prefix, packed_modules_mapping)
|
|
self.quant_method = self.quantizer.build_moe_method()
|
|
|
|
def create_weights(
|
|
self,
|
|
layer: torch.nn.Module,
|
|
num_experts: int,
|
|
hidden_size: int,
|
|
intermediate_size_per_partition: int,
|
|
params_dtype: torch.dtype,
|
|
**extra_weight_attrs,
|
|
) -> None:
|
|
weight_param = self.quant_method.get_weight(
|
|
num_experts, intermediate_size_per_partition, hidden_size,
|
|
params_dtype)
|
|
for param_key, param_value in weight_param.items():
|
|
param = torch.nn.Parameter(param_value, requires_grad=False)
|
|
layer.register_parameter(param_key, param)
|
|
set_weight_attrs(param, extra_weight_attrs)
|
|
|
|
extra_weight_attrs.update(
|
|
{"quant_method": FusedMoeWeightScaleSupported.CHANNEL.value})
|
|
# load `offset` weight in `fused_moe_perchannel_weight_loader`, the original weight load in vllm 0.7.3 could only load `scale` and `zero`
|
|
extra_weight_attrs.update(
|
|
{"weight_loader": fused_moe_perchannel_weight_loader})
|
|
dynamic_quant_param = self.quant_method.get_dynamic_quant_param(
|
|
num_experts, intermediate_size_per_partition, hidden_size,
|
|
params_dtype)
|
|
for param_key, param_value in dynamic_quant_param.items():
|
|
param = torch.nn.Parameter(param_value, requires_grad=False)
|
|
layer.register_parameter(param_key, param)
|
|
set_weight_attrs(param, extra_weight_attrs)
|
|
|
|
def apply(
|
|
self,
|
|
layer: torch.nn.Module,
|
|
x: torch.Tensor,
|
|
use_grouped_topk: bool,
|
|
top_k: int,
|
|
router_logits: torch.Tensor,
|
|
renormalize: bool,
|
|
topk_group: Optional[int] = None,
|
|
num_expert_group: Optional[int] = None,
|
|
custom_routing_function: Optional[Callable] = None,
|
|
scoring_func: str = "softmax",
|
|
e_score_correction_bias: Optional[torch.Tensor] = None
|
|
) -> torch.Tensor:
|
|
return self.quant_method.apply(layer, x, use_grouped_topk, top_k,
|
|
router_logits, renormalize, topk_group,
|
|
num_expert_group,
|
|
custom_routing_function, scoring_func,
|
|
e_score_correction_bias)
|
|
|
|
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
|
|
if hasattr(self.quant_method, "process_weights_after_loading"):
|
|
self.quant_method.process_weights_after_loading(layer)
|