mirror of
https://github.com/vllm-project/vllm-ascend.git
synced 2025-10-20 13:43:53 +08:00
### What this PR does / why we need it? Add model basic accuracy test(Qwen2.5-0.5B-Instruct) Signed-off-by: hfadzxy <starmoon_zhang@163.com>
205 lines
7.2 KiB
Python
205 lines
7.2 KiB
Python
#
|
|
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
|
|
# Copyright 2023 The vLLM team.
|
|
#
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# Adapted from vllm/model_executor/models/qwen2_vl.py
|
|
# This file is a part of the vllm-ascend project.
|
|
|
|
from functools import partial
|
|
from typing import Callable, Optional, Type
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch_npu
|
|
from einops import rearrange
|
|
from transformers.models.qwen2_vl.configuration_qwen2_vl import \
|
|
Qwen2VLVisionConfig
|
|
from vllm.config import VllmConfig
|
|
from vllm.model_executor.layers.activation import QuickGELU
|
|
from vllm.model_executor.layers.quantization import QuantizationConfig
|
|
from vllm.model_executor.models.qwen2_vl import (
|
|
Qwen2VisionAttention, Qwen2VisionBlock, Qwen2VisionPatchEmbed,
|
|
Qwen2VisionTransformer, Qwen2VLDummyInputsBuilder,
|
|
Qwen2VLForConditionalGeneration, Qwen2VLMultiModalProcessor,
|
|
Qwen2VLProcessingInfo, apply_rotary_pos_emb_vision)
|
|
from vllm.model_executor.models.utils import maybe_prefix
|
|
from vllm.multimodal import MULTIMODAL_REGISTRY
|
|
|
|
|
|
class CustomQwen2VisionAttention(Qwen2VisionAttention):
|
|
|
|
def __init__(
|
|
self,
|
|
embed_dim: int,
|
|
num_heads: int,
|
|
projection_size: int,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__(
|
|
embed_dim,
|
|
num_heads,
|
|
projection_size,
|
|
quant_config,
|
|
prefix,
|
|
)
|
|
self.cu_seqlens = None
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
cu_seqlens: torch.Tensor,
|
|
rotary_pos_emb: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
|
|
self.cu_seqlens = cu_seqlens
|
|
|
|
# [s, b, c] --> [s, b, 3 * head * head_dim]
|
|
x, _ = self.qkv(x)
|
|
|
|
# [s, b, 3 * head * head_dim] -> 3 * [s, b, head, head_dim]
|
|
q, k, v = self.split_qkv(x)
|
|
batch_size = q.shape[1]
|
|
|
|
q, k, v = [
|
|
rearrange(x, "s b ... -> b s ...").contiguous() for x in (q, k, v)
|
|
]
|
|
if rotary_pos_emb is not None:
|
|
q = apply_rotary_pos_emb_vision(q, rotary_pos_emb)
|
|
k = apply_rotary_pos_emb_vision(k, rotary_pos_emb)
|
|
q, k, v = [
|
|
rearrange(x, "b s h d -> (b s) h d").contiguous()
|
|
for x in (q, k, v)
|
|
]
|
|
|
|
context_layer = torch.torch.empty_like(q)
|
|
|
|
# operator requires pta version >= 2.5.1.dev20250226
|
|
torch_npu._npu_flash_attention_unpad(
|
|
query=q,
|
|
key=k,
|
|
value=v,
|
|
seq_len=self.cu_seqlens,
|
|
scale_value=self.hidden_size_per_attention_head**-0.5,
|
|
num_heads=self.num_attention_heads_per_partition,
|
|
num_kv_heads=self.num_attention_heads_per_partition,
|
|
out=context_layer)
|
|
context_layer = rearrange(context_layer,
|
|
"(b s) h d -> s b (h d)",
|
|
b=batch_size).contiguous()
|
|
|
|
output, _ = self.proj(context_layer)
|
|
return output
|
|
|
|
|
|
class CustomQwen2VisionBlock(Qwen2VisionBlock):
|
|
|
|
def __init__(
|
|
self,
|
|
dim: int,
|
|
num_heads: int,
|
|
mlp_ratio: float,
|
|
act_layer: Type[nn.Module] = QuickGELU,
|
|
norm_layer: Optional[Callable[[int], nn.Module]] = None,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__(dim, num_heads, mlp_ratio, act_layer, norm_layer,
|
|
quant_config, prefix)
|
|
self.attn = CustomQwen2VisionAttention(embed_dim=dim,
|
|
num_heads=num_heads,
|
|
projection_size=dim,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.attn")
|
|
|
|
|
|
class CustomQwen2VisionPatchEmbed(Qwen2VisionPatchEmbed):
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
x = x.matmul(
|
|
self.proj.weight.data.view(self.embed_dim, -1).transpose(0, 1))
|
|
return x
|
|
|
|
|
|
class CustomQwen2VisionTransformer(Qwen2VisionTransformer):
|
|
|
|
def __init__(
|
|
self,
|
|
vision_config: Qwen2VLVisionConfig,
|
|
norm_eps: float = 1e-6,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__(vision_config, norm_eps, quant_config, prefix)
|
|
|
|
self.patch_embed = CustomQwen2VisionPatchEmbed(
|
|
patch_size=vision_config.patch_size,
|
|
temporal_patch_size=vision_config.temporal_patch_size,
|
|
in_channels=vision_config.in_channels,
|
|
embed_dim=vision_config.embed_dim,
|
|
)
|
|
|
|
self.blocks = nn.ModuleList([
|
|
CustomQwen2VisionBlock(dim=self.embed_dim,
|
|
num_heads=self.num_heads,
|
|
mlp_ratio=vision_config.mlp_ratio,
|
|
norm_layer=partial(nn.LayerNorm,
|
|
eps=norm_eps),
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.blocks.{layer_idx}")
|
|
for layer_idx in range(vision_config.depth)
|
|
])
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
grid_thw: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
# patchify
|
|
x = x.to(device=self.device, dtype=self.dtype)
|
|
x = self.patch_embed(x)
|
|
|
|
# compute position embedding
|
|
rotary_pos_emb = self.rot_pos_emb(grid_thw)
|
|
|
|
# compute cu_seqlens and avoid cumsum to fit operator unpadFA
|
|
cu_seqlens = torch.repeat_interleave(grid_thw[:, 1] * grid_thw[:, 2],
|
|
grid_thw[:,
|
|
0]).cpu().to(torch.int32)
|
|
|
|
x = x.unsqueeze(1)
|
|
for blk in self.blocks:
|
|
x = blk(x, cu_seqlens=cu_seqlens, rotary_pos_emb=rotary_pos_emb)
|
|
|
|
# adapter
|
|
x = self.merger(x)
|
|
return x
|
|
|
|
|
|
@MULTIMODAL_REGISTRY.register_processor(Qwen2VLMultiModalProcessor,
|
|
info=Qwen2VLProcessingInfo,
|
|
dummy_inputs=Qwen2VLDummyInputsBuilder)
|
|
class CustomQwen2VLForConditionalGeneration(Qwen2VLForConditionalGeneration):
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__(vllm_config=vllm_config)
|
|
self.visual = CustomQwen2VisionTransformer(
|
|
self.config.vision_config,
|
|
norm_eps=getattr(self.config, "rms_norm_eps", 1e-6),
|
|
quant_config=self._maybe_ignore_quant_config(
|
|
vllm_config.quant_config),
|
|
prefix=maybe_prefix(prefix, "visual"),
|
|
)
|