mirror of
https://github.com/vllm-project/vllm-ascend.git
synced 2025-10-20 13:43:53 +08:00
### What this PR does / why we need it? Add model basic accuracy test(Qwen2.5-0.5B-Instruct) Signed-off-by: hfadzxy <starmoon_zhang@163.com>
226 lines
8.9 KiB
Python
226 lines
8.9 KiB
Python
#
|
|
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# This file is a part of the vllm-ascend project.
|
|
#
|
|
|
|
from dataclasses import dataclass
|
|
from typing import Any, Dict, List, Optional, Tuple, Type
|
|
|
|
import torch
|
|
import torch_npu
|
|
from vllm.attention.backends.abstract import (AttentionBackend, AttentionImpl,
|
|
AttentionLayer, AttentionType)
|
|
from vllm.attention.backends.utils import CommonAttentionState
|
|
|
|
|
|
class AscendAttentionBackend(AttentionBackend):
|
|
|
|
@staticmethod
|
|
def get_name() -> str:
|
|
return "ASCEND"
|
|
|
|
@staticmethod
|
|
def get_impl_cls() -> Type["AscendAttentionBackendImpl"]:
|
|
return AscendAttentionBackendImpl
|
|
|
|
@staticmethod
|
|
def get_metadata_cls() -> Type["AscendMetadata"]:
|
|
return AscendMetadata
|
|
|
|
@staticmethod
|
|
def get_state_cls() -> Type["CommonAttentionState"]:
|
|
return CommonAttentionState
|
|
|
|
@staticmethod
|
|
def get_kv_cache_shape(
|
|
num_blocks: int,
|
|
block_size: int,
|
|
num_kv_heads: int,
|
|
head_size: int,
|
|
) -> Tuple[int, ...]:
|
|
return (2, num_blocks, block_size, num_kv_heads * head_size)
|
|
|
|
@staticmethod
|
|
def swap_blocks(
|
|
src_kv_cache: List[torch.Tensor],
|
|
dst_kv_cache: List[torch.Tensor],
|
|
src_to_dst: torch.Tensor,
|
|
) -> None:
|
|
src_key_cache, src_value_cache = src_kv_cache[0], src_kv_cache[1]
|
|
dst_key_cache, dst_value_cache = dst_kv_cache[0], dst_kv_cache[1]
|
|
src_indices = src_to_dst[:, 0]
|
|
dst_indices = src_to_dst[:, 1]
|
|
|
|
dst_key_cache[dst_indices] = src_key_cache[src_indices].to(
|
|
dst_key_cache.device)
|
|
dst_value_cache[dst_indices] = src_value_cache[src_indices].to(
|
|
dst_key_cache.device)
|
|
|
|
@staticmethod
|
|
def copy_blocks(
|
|
kv_caches: List[torch.Tensor],
|
|
src_to_dists: torch.Tensor,
|
|
) -> None:
|
|
src_indices = src_to_dists[:, 0]
|
|
dst_indices = src_to_dists[:, 1]
|
|
|
|
for kv_cache in kv_caches:
|
|
key_caches = kv_cache[0]
|
|
value_caches = kv_cache[1]
|
|
key_caches[dst_indices] = key_caches[src_indices]
|
|
value_caches[dst_indices] = value_caches[src_indices]
|
|
|
|
|
|
@dataclass
|
|
class AscendMetadata:
|
|
# (batch_size, max_blocks_per_seq).
|
|
# Block addresses per sequence. (Seq id -> list of physical block)
|
|
block_tables: Optional[torch.Tensor]
|
|
# (batch_size,). The sequence length per sequence. Sequence length means
|
|
# the computed tokens + new tokens None if it is a decoding.
|
|
seq_lens: Optional[List[int]] = None
|
|
context_lens: Optional[List[int]] = None
|
|
# Maximum query length in the batch. None for decoding.
|
|
max_query_len: Optional[int] = None
|
|
# (num_tokens,). The indices of the token slots that input tokens will be
|
|
# stored into. E.g., if `slot_mapping` is [35, 2, 17] and the block size
|
|
# is 16, the three tokens are stored in the 3rd slot in block 2, 2nd slot
|
|
# in block 0, and 1st slot in block 1, respectively.
|
|
slot_mapping: torch.Tensor = None
|
|
# TODO: Indicates whether there are only prefill requests.
|
|
# FlashAttention can be used when there are only prefill requests.
|
|
# FlashAttention has better performance than PageAtttention,
|
|
# but it does not support decode requests.
|
|
is_only_prefill: bool = False
|
|
|
|
attn_mask: Optional[torch.Tensor] = None
|
|
|
|
|
|
class AscendAttentionBackendImpl(AttentionImpl):
|
|
|
|
def __init__(
|
|
self,
|
|
num_heads: int,
|
|
head_size: int,
|
|
scale: float,
|
|
num_kv_heads: int,
|
|
alibi_slopes: Optional[List[float]],
|
|
sliding_window: Optional[int],
|
|
kv_cache_dtype: str,
|
|
blocksparse_params: Optional[Dict[str, Any]] = None,
|
|
logits_soft_cap: Optional[float] = None,
|
|
attn_type: str = AttentionType.DECODER,
|
|
) -> None:
|
|
self.num_heads = num_heads
|
|
self.head_size = head_size
|
|
self.scale = float(scale)
|
|
self.num_kv_heads = num_heads if num_kv_heads is None else num_kv_heads
|
|
self.hidden_size = self.num_heads * self.head_size
|
|
self.kv_cache_dtype = kv_cache_dtype
|
|
self.sliding_window = sliding_window
|
|
if alibi_slopes is not None:
|
|
alibi_slopes = torch.tensor(alibi_slopes,
|
|
dtype=torch.float32,
|
|
device="npu")
|
|
self.alibi_slopes = alibi_slopes
|
|
self.attn_type = attn_type
|
|
|
|
assert self.num_heads % self.num_kv_heads == 0
|
|
self.num_queries_per_kv = self.num_heads // self.num_kv_heads
|
|
self.seq_len_cpu_tensor = None
|
|
|
|
def forward(
|
|
self,
|
|
layer: AttentionLayer,
|
|
query: torch.Tensor,
|
|
key: torch.Tensor,
|
|
value: torch.Tensor,
|
|
kv_cache: torch.Tensor,
|
|
attn_metadata: AscendMetadata,
|
|
output: Optional[torch.Tensor] = None,
|
|
) -> torch.Tensor:
|
|
"""Forward pass with Ascend attention.
|
|
Args:
|
|
query: shape = [batch_size, seq_len, num_heads * head_size]
|
|
key: shape = [batch_size, seq_len, num_kv_heads * head_size]
|
|
value: shape = [batch_size, seq_len, num_kv_heads * head_size]
|
|
kv_cache: shape = [2, num_blocks, block_size,
|
|
num_kv_heads * head_size]
|
|
key_cache = [num_blocks, block_size,
|
|
num_kv_heads * head_size]
|
|
value_cache = [num_blocks, block_size,
|
|
num_kv_heads * head_size]
|
|
attn_metadata: Metadata for attention.
|
|
Returns:
|
|
shape = [batch_size * seq_len, num_heads, head_size]
|
|
"""
|
|
num_tokens = query.shape[0]
|
|
output = torch.empty(num_tokens,
|
|
self.num_heads,
|
|
self.head_size,
|
|
dtype=query.dtype,
|
|
device=query.device)
|
|
|
|
if attn_metadata is None:
|
|
# Profiling run.
|
|
return output.view(num_tokens, self.hidden_size)
|
|
assert layer._k_scale_float == 1.0 and layer._v_scale_float == 1.0
|
|
attn_type = self.attn_type
|
|
if attn_type != AttentionType.DECODER:
|
|
raise NotImplementedError("Encoder self-attention and "
|
|
"encoder/decoder cross-attention "
|
|
"are not implemented for "
|
|
"PallasAttentionBackendImpl")
|
|
# View q k v to BSH.
|
|
query = query.view(-1, self.num_heads, self.head_size)
|
|
key = key.view(-1, self.num_kv_heads, self.head_size)
|
|
value = value.view(-1, self.num_kv_heads, self.head_size)
|
|
# TODO: Remove this contiguous in the future.
|
|
value = value.contiguous()
|
|
|
|
if hasattr(layer, 'quant_method'):
|
|
# TODO: Add attr (num_prefills, prefill_metadata, decode_metadata) to AscendMetadata
|
|
pass
|
|
else:
|
|
if kv_cache.numel() > 0:
|
|
key_cache, value_cache = kv_cache[0], kv_cache[1]
|
|
num_blocks, block_size, _ = key_cache.shape
|
|
key_cache = key_cache.view(num_blocks, block_size,
|
|
self.num_kv_heads, self.head_size)
|
|
value_cache = value_cache.view(num_blocks, block_size,
|
|
self.num_kv_heads,
|
|
self.head_size)
|
|
slots = attn_metadata.slot_mapping
|
|
torch_npu._npu_reshape_and_cache(key=key,
|
|
value=value,
|
|
key_cache=key_cache,
|
|
value_cache=value_cache,
|
|
slot_indices=slots)
|
|
|
|
# use paged attention
|
|
torch_npu._npu_paged_attention_splitfuse(
|
|
query=query,
|
|
key_cache=key_cache,
|
|
value_cache=value_cache,
|
|
mask=attn_metadata.attn_mask,
|
|
block_table=attn_metadata.block_tables,
|
|
seq_len=attn_metadata.seq_lens,
|
|
context_lens=attn_metadata.context_lens,
|
|
num_kv_heads=self.num_kv_heads,
|
|
num_heads=self.num_heads,
|
|
scale_value=self.scale,
|
|
out=output)
|
|
return output.view(num_tokens, self.hidden_size)
|