Files
vllm-ascend/tests/ops/test_rotary_embedding.py
hfadzxy 9935d45728 [CI]Add model basic accuracy test(Qwen2.5-0.5B-Instruct) (#460)
### What this PR does / why we need it?
Add model basic accuracy test(Qwen2.5-0.5B-Instruct)

Signed-off-by: hfadzxy <starmoon_zhang@163.com>
2025-04-17 14:59:56 +08:00

205 lines
6.9 KiB
Python

# Copyright 2023 The vLLM team.
# Copyright (c) Huawei Technologies Co., Ltd. 2024-2025. All rights reserved.
# Adapted from
# https://github.com/vllm-project/vllm/blob/main/vllm/tests/kernels/test_rotary_embedding.py
from typing import Optional, Tuple, Union
import pytest
import torch
import torch.nn as nn
import torch_npu # noqa: F401
import vllm_ascend.platform # noqa: F401
# Only Neox style true scenario is supported for now
IS_NEOX_STYLE = [True]
DTYPES = [torch.half]
HEAD_SIZES = [64, 96, 128, 256]
ROTARY_DIMS = [None, 32] # None means rotary dim == head size
NUM_HEADS = [17] # Arbitrary values for testing
BATCH_SIZES = [5] # Arbitrary values for testing
SEQ_LENS = [11, 4096] # Arbitrary values for testing
SEEDS = [0]
DEVICES = [f"npu:{0}"]
# Set tolerance to 1 for quant ops
DEFAULT_ATOL = 1e-3
DEFAULT_RTOL = 1e-3
def _apply_rotary_emb(
x: torch.Tensor,
cos: torch.Tensor,
sin: torch.Tensor,
is_neox_style: bool,
) -> torch.Tensor:
"""
Args:
x: [num_tokens, num_heads, head_size]
cos: [num_tokens, head_size // 2]
sin: [num_tokens, head_size // 2]
is_neox_style: Whether to use the Neox-style or GPT-J-style rotary
positional embeddings.
"""
cos = cos.unsqueeze(-2).to(x.dtype)
sin = sin.unsqueeze(-2).to(x.dtype)
if is_neox_style:
x1, x2 = torch.chunk(x, 2, dim=-1)
else:
x1 = x[..., ::2]
x2 = x[..., 1::2]
o1 = x1 * cos - x2 * sin
o2 = x2 * cos + x1 * sin
if is_neox_style:
return torch.cat((o1, o2), dim=-1)
else:
return torch.stack((o1, o2), dim=-1).flatten(-2)
# adapted from https://github.com/vllm-project/vllm/vllm/model_executor/layers/rotary_embedding.py
class RotaryEmbedding(nn.Module):
"""Original rotary positional embedding."""
def __init__(
self,
head_size: int,
rotary_dim: int,
max_position_embeddings: int,
base: int,
is_neox_style: bool,
dtype: torch.dtype,
) -> None:
super().__init__()
self.head_size = head_size
self.rotary_dim = rotary_dim
self.max_position_embeddings = max_position_embeddings
self.base = base
self.is_neox_style = is_neox_style
self.dtype = dtype
cache = self._compute_cos_sin_cache()
cache = cache.to(dtype)
self.cos_sin_cache: torch.Tensor
self.register_buffer("cos_sin_cache", cache, persistent=False)
def _compute_inv_freq(self, base: Union[int, float]) -> torch.Tensor:
"""Compute the inverse frequency."""
# NOTE(woosuk): To exactly match the HF implementation, we need to
# use CPU to compute the cache and then move it to GPU. However, we
# create the cache on GPU for faster initialization. This may cause
# a slight numerical difference between the HF implementation and ours.
inv_freq = 1.0 / (base**(torch.arange(
0, self.rotary_dim, 2, dtype=torch.float) / self.rotary_dim))
return inv_freq
def _compute_cos_sin_cache(self) -> torch.Tensor:
"""Compute the cos and sin cache."""
inv_freq = self._compute_inv_freq(self.base)
t = torch.arange(self.max_position_embeddings, dtype=torch.float)
freqs = torch.einsum("i,j -> ij", t, inv_freq)
cos = freqs.cos()
sin = freqs.sin()
cache = torch.cat((cos, sin), dim=-1)
return cache
def forward_native(
self,
positions: torch.Tensor,
query: torch.Tensor,
key: torch.Tensor,
offsets: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""A PyTorch-native implementation of forward()."""
if offsets is not None:
positions = positions + offsets
positions = positions.flatten()
num_tokens = positions.shape[0]
cos_sin = self.cos_sin_cache.index_select(0, positions)
cos, sin = cos_sin.chunk(2, dim=-1)
query_shape = query.shape
query = query.view(num_tokens, -1, self.head_size)
query_rot = query[..., :self.rotary_dim]
query_pass = query[..., self.rotary_dim:]
query_rot = _apply_rotary_emb(query_rot, cos, sin, self.is_neox_style)
query = torch.cat((query_rot, query_pass), dim=-1).reshape(query_shape)
key_shape = key.shape
key = key.view(num_tokens, -1, self.head_size)
key_rot = key[..., :self.rotary_dim]
key_pass = key[..., self.rotary_dim:]
key_rot = _apply_rotary_emb(key_rot, cos, sin, self.is_neox_style)
key = torch.cat((key_rot, key_pass), dim=-1).reshape(key_shape)
return query, key
# test with leading dimension and merge seqlen and batch_size as num_tokens
# TODO(ganyi): open this test in the future
@pytest.mark.skip(
reason=
"skip this test by default for now because of ci issue, will enable it in the future"
)
@pytest.mark.parametrize("is_neox_style", IS_NEOX_STYLE)
@pytest.mark.parametrize("batch_size", BATCH_SIZES)
@pytest.mark.parametrize("seq_len", SEQ_LENS)
@pytest.mark.parametrize("num_heads", NUM_HEADS)
@pytest.mark.parametrize("head_size", HEAD_SIZES)
@pytest.mark.parametrize("rotary_dim", ROTARY_DIMS)
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("seed", SEEDS)
@pytest.mark.parametrize("device", DEVICES)
@torch.inference_mode()
def test_rotary_embedding_quant_with_leading_dim(
is_neox_style: bool,
batch_size: int,
seq_len: int,
num_heads: int,
head_size: int,
rotary_dim: Optional[int],
dtype: torch.dtype,
seed: int,
device: str,
max_position: int = 8192,
base: int = 10000,
) -> None:
if rotary_dim is None:
rotary_dim = head_size
torch.set_default_device(device)
if rotary_dim is None:
rotary_dim = head_size
rope = RotaryEmbedding(head_size, rotary_dim, max_position, base,
is_neox_style, dtype)
rope = rope.to(dtype=dtype)
num_tokens = batch_size * seq_len
positions = torch.randint(0, max_position, (batch_size * seq_len, ))
qkv_tensor = torch.randn(num_tokens,
num_heads * head_size * 3,
dtype=dtype)
query, key, _ = qkv_tensor.split(
[num_heads * head_size, num_heads * head_size, num_heads * head_size],
dim=-1,
)
ref_query, ref_key = rope.forward_native(positions, query, key)
torch.ops._C.rotary_embedding(
positions,
query,
key,
rope.head_size,
rope.cos_sin_cache,
rope.is_neox_style,
)
# Compare the results.
torch.testing.assert_close(query,
ref_query,
atol=DEFAULT_ATOL,
rtol=DEFAULT_RTOL)
torch.testing.assert_close(key,
ref_key,
atol=DEFAULT_ATOL,
rtol=DEFAULT_RTOL)