Files
vllm-ascend/vllm_ascend/worker/worker_v1.py
Mengqing Cao 8abe517870 [Refactor] Adapt deepseek-v3.2 to vllm 0.11.0 (#3432)
### What this PR does / why we need it?
Adapt deepseek-v3.2 to vllm 0.11.0, removing the useless patch.

The final goal is to remove all the patches and align the code arch to
vllm, thus we need to do the following work in next prs.
TODO:
- [x] remove patch on attention spec
- [ ] refactor the kvcache creation logic

### Does this PR introduce _any_ user-facing change?
N/A

### How was this patch tested?
1. CI passed with existing test.
2. Test pass with deepseek-v3.2-exp


- vLLM version: v0.11.0rc3
- vLLM main: https://github.com/vllm-project/vllm/commit/v0.11.0

Signed-off-by: MengqingCao <cmq0113@163.com>
2025-10-15 17:48:58 +08:00

426 lines
18 KiB
Python

#
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
# Copyright 2023 The vLLM team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This file is a part of the vllm-ascend project.
# Adapted from vllm-project/vllm/vllm/worker/gpu_worker.py
#
import copy
from typing import Optional, Union
import torch
import torch.nn as nn
import torch_npu
import vllm.envs as envs_vllm
from torch_npu.op_plugin.atb._atb_ops import _register_atb_extensions
from torch_npu.profiler import dynamic_profile as dp
from vllm.config import CUDAGraphMode, VllmConfig
from vllm.distributed import (ensure_model_parallel_initialized,
init_distributed_environment)
from vllm.distributed.kv_transfer import ensure_kv_transfer_initialized
from vllm.distributed.parallel_state import get_pp_group, get_tp_group
from vllm.logger import logger
from vllm.lora.request import LoRARequest
from vllm.sequence import IntermediateTensors
from vllm.tasks import SupportedTask
from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE, GiB_bytes
from vllm.v1.core.sched.output import SchedulerOutput
from vllm.v1.kv_cache_interface import KVCacheConfig, KVCacheSpec
from vllm.v1.outputs import (EMPTY_MODEL_RUNNER_OUTPUT, AsyncModelRunnerOutput,
DraftTokenIds, ModelRunnerOutput)
from vllm.v1.worker.worker_base import WorkerBase
import vllm_ascend.envs as envs_ascend
from vllm_ascend.ascend_config import init_ascend_config
from vllm_ascend.device_allocator.camem import CaMemAllocator
from vllm_ascend.distributed.parallel_state import init_ascend_model_parallel
from vllm_ascend.platform import NPUPlatform
from vllm_ascend.utils import (init_ascend_soc_version,
register_ascend_customop, sleep_mode_enabled,
try_register_lib)
from vllm_ascend.worker.model_runner_v1 import NPUModelRunner
torch._dynamo.trace_rules.clear_lru_cache() # noqa: E402
from torch._dynamo.variables import TorchInGraphFunctionVariable # noqa: E402
torch_non_c_binding_in_graph_functions_npu = dict.fromkeys(
["torch.npu.current_stream"],
TorchInGraphFunctionVariable,
) # noqa: E402
torch_non_c_binding_in_graph_functions_npu[
"torch.npu.stream"] = TorchInGraphFunctionVariable # noqa: E402
torch._dynamo.trace_rules.torch_name_rule_map.append(
torch_non_c_binding_in_graph_functions_npu) # noqa: E402
class NPUWorker(WorkerBase):
def __init__(
self,
vllm_config: VllmConfig,
local_rank: int,
rank: int,
distributed_init_method: str,
is_driver_worker: bool = False,
# Additional parameters for compatibility with vllm
**kwargs):
"""Initialize the worker for Ascend."""
# register patch for vllm
from vllm_ascend.utils import adapt_patch
adapt_patch()
# Register ops when worker init.
from vllm_ascend import ops
ops.register_dummy_fusion_op()
_register_atb_extensions()
register_ascend_customop(vllm_config)
# init ascend config and soc version
init_ascend_config(vllm_config)
init_ascend_soc_version()
use_sparse = False
if vllm_config.model_config is not None:
use_sparse = hasattr(vllm_config.model_config.hf_config,
"index_topk")
if use_sparse:
# Direct import instead of using try_register_lib to ensure proper error handling when
# custom_ops is necessary but not available (e.g., in DeepSeek v3.2 deployments)
# yapf: disable
import custom_ops # type: ignore # noqa
# yapf: enable
logger.info(
"custom_ops module loaded successfully. Custom operators like "
"torch.ops.custom.npu_sparse_flash_attention are now available."
)
super().__init__(vllm_config=vllm_config,
local_rank=local_rank,
rank=rank,
distributed_init_method=distributed_init_method,
is_driver_worker=is_driver_worker)
# Try to import mindie_turbo to accelerate vLLM inference.
try_register_lib(
"mindie_turbo",
"MindIE Turbo is installed. vLLM inference will be accelerated with MindIE Turbo."
)
if self.cache_config.cache_dtype == "auto":
self.cache_dtype = self.model_config.dtype
else:
self.cache_dtype = STR_DTYPE_TO_TORCH_DTYPE[
self.cache_config.cache_dtype]
if self.model_config.trust_remote_code:
# note: lazy import to avoid importing torch before initializing
from vllm.utils import init_cached_hf_modules
init_cached_hf_modules()
self.profiler = self._init_profiler()
if sleep_mode_enabled():
# Buffers saved before sleep
self._sleep_saved_buffers: dict[str, torch.Tensor] = {}
# FixMe: this is a patch to fix the issue cause by https://github.com/vllm-project/vllm/commit/de94289a98d7ec52a5ef02719e01a1db8b505170
from vllm.model_executor.layers.linear import \
WEIGHT_LOADER_V2_SUPPORTED
if "UnquantizedLinearMethod" in WEIGHT_LOADER_V2_SUPPORTED:
WEIGHT_LOADER_V2_SUPPORTED.remove("UnquantizedLinearMethod")
def sleep(self, level: int = 1) -> None:
if not sleep_mode_enabled():
raise ValueError(
"Sleep mode is not enabled. Please compile vllm-ascend with COMPILE_CUSTOM_KERNELS=1."
)
free_bytes_before_sleep = NPUPlatform.mem_get_info()[0]
# Save the buffers before level 2 sleep
if level == 2:
model = self.model_runner.model
self._sleep_saved_buffers = {
name: buffer.cpu().clone()
for name, buffer in model.named_buffers()
}
allocator = CaMemAllocator.get_instance()
allocator.sleep(offload_tags=("weights", ) if level == 1 else tuple())
free_bytes_after_sleep, total = NPUPlatform.mem_get_info()
freed_bytes = free_bytes_after_sleep - free_bytes_before_sleep
used_bytes = total - free_bytes_after_sleep
assert freed_bytes >= 0, "Memory usage increased after sleeping."
logger.info(
"Sleep mode freed %.2f GiB memory, "
"%.2f GiB memory is still in use.", freed_bytes / GiB_bytes,
used_bytes / GiB_bytes)
def wake_up(self, tags: Optional[list[str]] = None) -> None:
if not sleep_mode_enabled():
raise ValueError(
"Sleep mode is not enabled. Please compile vllm-ascend with COMPILE_CUSTOM_KERNELS=1."
)
allocator = CaMemAllocator.get_instance()
allocator.wake_up(tags=tags)
# Restore the buffers after level 2 sleep
if len(self._sleep_saved_buffers):
model = self.model_runner.model
for name, buffer in model.named_buffers():
if name in self._sleep_saved_buffers:
buffer.data.copy_(self._sleep_saved_buffers[name].data)
self._sleep_saved_buffers = {}
def initialize_cache(self, num_gpu_blocks: int,
num_cpu_blocks: int) -> None:
self.cache_config.num_gpu_blocks = num_gpu_blocks
self.cache_config.num_cpu_blocks = num_cpu_blocks
def _init_device(self):
device = torch.device(f"npu:{self.local_rank}")
NPUPlatform.set_device(device)
NPUPlatform.empty_cache()
self.init_npu_memory = NPUPlatform.mem_get_info()[0]
# Initialize the distributed environment.
self._init_worker_distributed_environment()
# Set random seed.
NPUPlatform.seed_everything(self.model_config.seed)
return device
def init_device(self):
device = self._init_device()
# Init ModelRunner here, so that we have access to self.device.
self.model_runner = NPUModelRunner(self.vllm_config, device)
def determine_available_memory(self) -> int:
# Profile the memory usage of the model and get the maximum number of
# cache blocks that can be allocated with the remaining free memory.
NPUPlatform.clear_npu_memory()
# Execute a forward pass with dummy inputs to profile the memory usage
# of the model.
_, total_npu_memory = NPUPlatform.mem_get_info()
self.model_runner.profile_run()
# Calculate the number of blocks that can be allocated with the
# profiled peak memory.
free_npu_memory, _ = NPUPlatform.mem_get_info()
# NOTE(woosuk): Here we assume that the other processes using the same
# GPU did not change their memory usage during the profiling.
assert self.init_npu_memory > free_npu_memory, (
"Error in memory profiling. "
f"Initial free memory {self.init_npu_memory}, current free memory"
f" {free_npu_memory}. This happens when the NPU memory was "
"not properly cleaned up before initializing the vLLM instance.")
# Get the peak memory allocation recorded by torch
peak_memory = torch_npu.npu.memory_stats()["allocated_bytes.all.peak"]
# TODO: don`t need impl this func after empty_cache in
# Worker.determine_num_available_blocks() unified`
NPUPlatform.empty_cache()
torch_allocated_bytes = torch_npu.npu.memory_stats(
)["allocated_bytes.all.current"]
total_allocated_bytes = torch_npu.npu.mem_get_info(
)[1] - torch_npu.npu.mem_get_info()[0]
non_torch_allocations = total_allocated_bytes - torch_allocated_bytes
if non_torch_allocations > 0:
peak_memory += non_torch_allocations
available_kv_cache_memory = int(
total_npu_memory * self.cache_config.gpu_memory_utilization -
peak_memory)
available_kv_cache_memory = int(max(available_kv_cache_memory, 0))
logger.info(
f"Available memory: {available_kv_cache_memory}, total memory: {total_npu_memory}"
)
return available_kv_cache_memory
def execute_model(
self,
scheduler_output: "SchedulerOutput",
) -> Optional[Union[ModelRunnerOutput, AsyncModelRunnerOutput]]:
# enable msMonitor to monitor the performance of vllm-ascend
if envs_ascend.MSMONITOR_USE_DAEMON:
dp.step()
intermediate_tensors = None
forward_pass = scheduler_output.total_num_scheduled_tokens > 0
if forward_pass and not get_pp_group().is_first_rank:
intermediate_tensors = IntermediateTensors(
get_pp_group().recv_tensor_dict(
all_gather_group=get_tp_group()))
output = self.model_runner.execute_model(scheduler_output,
intermediate_tensors)
if isinstance(output, (ModelRunnerOutput, AsyncModelRunnerOutput)):
return output
assert isinstance(output, IntermediateTensors)
parallel_config = self.vllm_config.parallel_config
assert parallel_config.distributed_executor_backend != (
"external_launcher") and not get_pp_group().is_last_rank
get_pp_group().send_tensor_dict(output.tensors,
all_gather_group=get_tp_group())
kv_connector_output = output.kv_connector_output
if not kv_connector_output:
return None
# In case of PP with kv transfer, we need to pass through the
# kv_connector_output
if (not kv_connector_output.finished_sending
and not kv_connector_output.finished_recving):
return EMPTY_MODEL_RUNNER_OUTPUT
output = copy.copy(EMPTY_MODEL_RUNNER_OUTPUT)
output.kv_connector_output = kv_connector_output
return output
def load_model(self) -> None:
if self.vllm_config.model_config.enable_sleep_mode:
allocator = CaMemAllocator.get_instance()
assert allocator.get_current_usage() == 0, (
"Sleep mode can only be "
"used for one instance per process.")
context = allocator.use_memory_pool(tag="weights")
else:
from contextlib import nullcontext
context = nullcontext() # type: ignore
with context:
self.model_runner.load_model()
def compile_or_warm_up_model(self) -> None:
# Note: need to adapt for graph mode.
self.model_runner.eplb_warmup()
warmup_sizes = (self.vllm_config.compilation_config.compile_sizes
or []).copy()
if not self.model_config.enforce_eager:
warmup_sizes = [
x for x in warmup_sizes if x not in
self.vllm_config.compilation_config.cudagraph_capture_sizes
]
for size in sorted(warmup_sizes, reverse=True):
logger.info("Compile and warming up model for size %d", size)
self.model_runner._dummy_run(size)
if not self.model_config.enforce_eager:
self.model_runner.capture_model()
# Call ATB matmul to warm up; otherwise, the first operation (ReshapeAndCache)
# may cause performance degradation at runtime.
self._warm_up_atb()
# Reset the seed to ensure that the random state is not affected by
# the model initialization and profiling.
NPUPlatform.seed_everything(self.model_config.seed)
def _warm_up_atb(self):
x = torch.rand((2, 4), dtype=torch.float16).npu()
weight = torch.rand((2, 4), dtype=torch.float16).npu()
c = torch.rand((4, 4), dtype=torch.float32).npu()
torch_npu._npu_matmul_add_fp32(x, weight, c)
def get_model(self) -> nn.Module:
return self.model_runner.get_model()
def get_kv_cache_spec(self) -> dict[str, KVCacheSpec]:
return self.model_runner.get_kv_cache_spec()
def initialize_from_config(self, kv_cache_config: KVCacheConfig) -> None:
"""Allocate NPU KV cache with the specified kv_cache_config."""
if self.vllm_config.model_config.enable_sleep_mode:
allocator = CaMemAllocator.get_instance()
context = allocator.use_memory_pool(tag="kv_cache")
else:
from contextlib import nullcontext
context = nullcontext() # type: ignore
with context:
self.model_runner.initialize_kv_cache(kv_cache_config)
def profile(self, is_start: bool = True):
if self.profiler is None:
raise RuntimeError("Profiler is not enabled.")
if is_start:
self.profiler.start()
else:
self.profiler.stop()
def add_lora(self, lora_request: LoRARequest) -> bool:
return self.model_runner.add_lora(lora_request)
def remove_lora(self, lora_id: int) -> bool:
return self.model_runner.remove_lora(lora_id)
def list_loras(self) -> set[int]:
return self.model_runner.list_loras()
def pin_lora(self, lora_id: int) -> bool:
return self.model_runner.pin_lora(lora_id)
def execute_dummy_batch(self) -> None:
force_attention = self.compilation_config.cudagraph_mode == CUDAGraphMode.FULL_DECODE_ONLY
self.model_runner._dummy_run(num_tokens=1,
uniform_decode=True,
force_attention=force_attention)
def _init_worker_distributed_environment(self) -> None:
"""Initialize the distributed environment."""
init_distributed_environment(self.parallel_config.world_size,
self.rank, self.distributed_init_method,
self.local_rank, "hccl")
ensure_model_parallel_initialized(
self.parallel_config.tensor_parallel_size,
self.parallel_config.pipeline_parallel_size)
init_ascend_model_parallel(self.parallel_config)
ensure_kv_transfer_initialized(self.vllm_config)
def _init_profiler(self):
# Torch profiler. Enabled and configured through env vars:
# VLLM_TORCH_PROFILER_DIR=/path/to/save/trace
if envs_vllm.VLLM_TORCH_PROFILER_DIR:
if envs_ascend.MSMONITOR_USE_DAEMON:
raise RuntimeError(
"MSMONITOR_USE_DAEMON and VLLM_TORCH_PROFILER_DIR cannot be both set at the same time."
)
torch_profiler_trace_dir = envs_vllm.VLLM_TORCH_PROFILER_DIR
logger.info("Profiling enabled. Traces will be saved to: %s",
torch_profiler_trace_dir)
experimental_config = torch_npu.profiler._ExperimentalConfig(
export_type=torch_npu.profiler.ExportType.Text,
profiler_level=torch_npu.profiler.ProfilerLevel.Level1,
msprof_tx=False,
aic_metrics=torch_npu.profiler.AiCMetrics.AiCoreNone,
l2_cache=False,
op_attr=False,
data_simplification=False,
record_op_args=False,
gc_detect_threshold=None,
)
return torch_npu.profiler.profile(
activities=[
torch_npu.profiler.ProfilerActivity.CPU,
torch_npu.profiler.ProfilerActivity.NPU,
],
with_stack=envs_vllm.VLLM_TORCH_PROFILER_WITH_STACK,
profile_memory=envs_vllm.\
VLLM_TORCH_PROFILER_WITH_PROFILE_MEMORY,
with_modules=False,
experimental_config=experimental_config,
on_trace_ready=torch_npu.profiler.tensorboard_trace_handler(
torch_profiler_trace_dir))
else:
return None
def get_supported_pooling_tasks(self):
return self.model_runner.get_supported_pooling_tasks()
def get_supported_tasks(self) -> "tuple[SupportedTask, ...]":
return self.model_runner.get_supported_tasks()
def take_draft_token_ids(self) -> Optional[DraftTokenIds]:
return self.model_runner.take_draft_token_ids()