mirror of
https://github.com/vllm-project/vllm-ascend.git
synced 2025-10-20 13:43:53 +08:00
V1 is enabled by default, no need to set it by hand now. This PR remove
the useless setting in example and tests
- vLLM version: v0.9.2
- vLLM main:
9ad0a4588b
Signed-off-by: wangxiyuan <wangxiyuan1007@gmail.com>
242 lines
9.4 KiB
Python
242 lines
9.4 KiB
Python
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# This file is a part of the vllm-ascend project.
|
|
#
|
|
|
|
import os
|
|
|
|
from transformers import PretrainedConfig
|
|
from vllm.config import ModelConfig, VllmConfig
|
|
|
|
from tests.ut.base import TestBase
|
|
from vllm_ascend.ascend_config import (_check_torchair_supported,
|
|
check_ascend_config,
|
|
clear_ascend_config, get_ascend_config,
|
|
init_ascend_config)
|
|
|
|
|
|
class TestAscendConfig(TestBase):
|
|
|
|
@staticmethod
|
|
def _clean_up_ascend_config(func):
|
|
|
|
def wrapper(*args, **kwargs):
|
|
clear_ascend_config()
|
|
func(*args, **kwargs)
|
|
clear_ascend_config()
|
|
|
|
return wrapper
|
|
|
|
@_clean_up_ascend_config
|
|
def test_init_ascend_config_without_additional_config(self):
|
|
test_vllm_config = VllmConfig()
|
|
# No additional config given, check the default value here.
|
|
ascend_config = init_ascend_config(test_vllm_config)
|
|
self.assertEqual(ascend_config.expert_tensor_parallel_size, 0)
|
|
self.assertIsNone(ascend_config.expert_map_path)
|
|
|
|
torchair_graph_config = ascend_config.torchair_graph_config
|
|
self.assertFalse(torchair_graph_config.enabled)
|
|
self.assertFalse(torchair_graph_config.use_cached_graph)
|
|
self.assertEqual(torchair_graph_config.graph_batch_sizes, [])
|
|
self.assertFalse(torchair_graph_config.graph_batch_sizes_init)
|
|
self.assertFalse(torchair_graph_config.enable_multistream_mla)
|
|
self.assertFalse(torchair_graph_config.enable_multistream_moe)
|
|
self.assertTrue(torchair_graph_config.enable_view_optimize)
|
|
self.assertFalse(torchair_graph_config.enable_kv_nz)
|
|
|
|
ascend_scheduler_config = ascend_config.ascend_scheduler_config
|
|
self.assertFalse(ascend_scheduler_config.enabled)
|
|
|
|
@_clean_up_ascend_config
|
|
def test_init_ascend_config_with_additional_config(self):
|
|
test_vllm_config = VllmConfig()
|
|
test_vllm_config.additional_config = {
|
|
"torchair_graph_config": {
|
|
"enabled": True,
|
|
"use_cached_graph": True,
|
|
"graph_batch_sizes": [1, 2, 4],
|
|
"graph_batch_sizes_init": False,
|
|
"enable_multistream_mla": True,
|
|
"enable_multistream_moe": True,
|
|
"enable_view_optimize": True,
|
|
"enable_kv_nz": True
|
|
},
|
|
"ascend_scheduler_config": {
|
|
"enabled": True
|
|
},
|
|
"expert_tensor_parallel_size": 1,
|
|
"expert_map_path": "test_expert_map_path",
|
|
"refresh": True
|
|
}
|
|
ascend_config = init_ascend_config(test_vllm_config)
|
|
self.assertEqual(ascend_config.expert_tensor_parallel_size, 1)
|
|
self.assertEqual(ascend_config.expert_map_path, "test_expert_map_path")
|
|
|
|
torchair_graph_config = ascend_config.torchair_graph_config
|
|
self.assertTrue(torchair_graph_config.enabled)
|
|
self.assertTrue(torchair_graph_config.use_cached_graph)
|
|
self.assertEqual(torchair_graph_config.graph_batch_sizes, [1, 2, 4])
|
|
self.assertFalse(torchair_graph_config.graph_batch_sizes_init)
|
|
self.assertTrue(torchair_graph_config.enable_multistream_mla)
|
|
self.assertTrue(torchair_graph_config.enable_multistream_moe)
|
|
self.assertTrue(torchair_graph_config.enable_view_optimize)
|
|
self.assertTrue(torchair_graph_config.enable_kv_nz)
|
|
|
|
ascend_scheduler_config = ascend_config.ascend_scheduler_config
|
|
self.assertTrue(ascend_scheduler_config.enabled)
|
|
|
|
@_clean_up_ascend_config
|
|
def test_init_ascend_config_with_refresh(self):
|
|
test_vllm_config = VllmConfig()
|
|
ascend_config = init_ascend_config(test_vllm_config)
|
|
self.assertFalse(ascend_config.torchair_graph_config.enabled)
|
|
|
|
test_vllm_config.additional_config = {
|
|
"torchair_graph_config": {
|
|
"enabled": True,
|
|
},
|
|
}
|
|
ascend_config = init_ascend_config(test_vllm_config)
|
|
self.assertFalse(ascend_config.torchair_graph_config.enabled)
|
|
|
|
test_vllm_config.additional_config = {
|
|
"torchair_graph_config": {
|
|
"enabled": True,
|
|
},
|
|
"refresh": True,
|
|
}
|
|
ascend_config = init_ascend_config(test_vllm_config)
|
|
self.assertTrue(ascend_config.torchair_graph_config.enabled)
|
|
|
|
@_clean_up_ascend_config
|
|
def test_init_ascend_config_with_wrong_input(self):
|
|
test_vllm_config = VllmConfig()
|
|
test_vllm_config.additional_config = {
|
|
"torchair_graph_config": {
|
|
"enabled": True,
|
|
"graph_batch_sizes": "fake_size",
|
|
},
|
|
"refresh": True,
|
|
}
|
|
with self.assertRaises(TypeError):
|
|
init_ascend_config(test_vllm_config)
|
|
|
|
test_vllm_config.additional_config = {
|
|
"torchair_graph_config": {
|
|
"enabled": False,
|
|
"graph_batch_sizes": [1, 2, 4, 8],
|
|
"graph_batch_sizes_init": True,
|
|
},
|
|
"refresh": True,
|
|
}
|
|
with self.assertRaises(ValueError):
|
|
init_ascend_config(test_vllm_config)
|
|
|
|
@_clean_up_ascend_config
|
|
def test_get_ascend_config(self):
|
|
test_vllm_config = VllmConfig()
|
|
ascend_config = init_ascend_config(test_vllm_config)
|
|
self.assertEqual(get_ascend_config(), ascend_config)
|
|
|
|
@_clean_up_ascend_config
|
|
def test_get_ascend_config_without_init(self):
|
|
with self.assertRaises(RuntimeError):
|
|
get_ascend_config()
|
|
|
|
@_clean_up_ascend_config
|
|
def test_clear_ascend_config(self):
|
|
test_vllm_config = VllmConfig()
|
|
ascend_config = init_ascend_config(test_vllm_config)
|
|
self.assertEqual(get_ascend_config(), ascend_config)
|
|
clear_ascend_config()
|
|
with self.assertRaises(RuntimeError):
|
|
get_ascend_config()
|
|
|
|
@_clean_up_ascend_config
|
|
def test_check_ascend_config_pass(self):
|
|
test_vllm_config = VllmConfig()
|
|
init_ascend_config(test_vllm_config)
|
|
check_ascend_config(test_vllm_config, False)
|
|
|
|
test_vllm_config.additional_config = {
|
|
"torchair_graph_config": {
|
|
"enabled": True,
|
|
},
|
|
"refresh": True
|
|
}
|
|
init_ascend_config(test_vllm_config)
|
|
check_ascend_config(test_vllm_config, False)
|
|
|
|
test_vllm_config.additional_config = {
|
|
"torchair_graph_config": {
|
|
"enabled": False,
|
|
},
|
|
"refresh": True
|
|
}
|
|
init_ascend_config(test_vllm_config)
|
|
check_ascend_config(test_vllm_config, False)
|
|
|
|
@_clean_up_ascend_config
|
|
def test_check_ascend_config_wrong_case(self):
|
|
test_vllm_config = VllmConfig()
|
|
|
|
# torchair + eager mode
|
|
with self.assertRaises(RuntimeError):
|
|
test_vllm_config.additional_config = {
|
|
"torchair_graph_config": {
|
|
"enabled": True,
|
|
},
|
|
"refresh": True
|
|
}
|
|
init_ascend_config(test_vllm_config)
|
|
enforce_eager = True
|
|
check_ascend_config(test_vllm_config, enforce_eager)
|
|
# torchair + non deepseek model
|
|
with self.assertRaises(NotImplementedError):
|
|
test_vllm_config.additional_config = {
|
|
"torchair_graph_config": {
|
|
"enabled": True,
|
|
},
|
|
"refresh": True
|
|
}
|
|
model_path = os.path.join(os.path.dirname(__file__), "fake_weight")
|
|
fake_model_config = ModelConfig(model=model_path)
|
|
fake_model_config.hf_config = PretrainedConfig()
|
|
fake_model_config.hf_config.model_type = "llama"
|
|
test_vllm_config.model_config = fake_model_config
|
|
init_ascend_config(test_vllm_config)
|
|
check_ascend_config(test_vllm_config, False)
|
|
# aclgraph + deepseek model
|
|
with self.assertRaises(NotImplementedError):
|
|
test_vllm_config.additional_config = {
|
|
"torchair_graph_config": {
|
|
"enabled": False,
|
|
},
|
|
"refresh": True
|
|
}
|
|
model_path = os.path.join(os.path.dirname(__file__), "fake_weight")
|
|
fake_model_config = ModelConfig(model=model_path)
|
|
fake_model_config.hf_config = PretrainedConfig()
|
|
fake_model_config.hf_config.model_type = "deepseek"
|
|
test_vllm_config.model_config = fake_model_config
|
|
init_ascend_config(test_vllm_config)
|
|
check_ascend_config(test_vllm_config, False)
|
|
|
|
def test_check_torchair_supported(self):
|
|
test_cases = [('deepseek_v3', True), ('PanguProMoE', True),
|
|
('qwen', False), ('llama', False)]
|
|
for model_type, expected_output in test_cases:
|
|
self.assertEqual(_check_torchair_supported(model_type),
|
|
expected_output)
|