Files
vllm-ascend/tests/ut/test_ascend_config.py
wangxiyuan 787010a637 [Test] Remove VLLM_USE_V1 in example and tests (#1733)
V1 is enabled by default, no need to set it by hand now. This PR remove
the useless setting in example and tests

- vLLM version: v0.9.2
- vLLM main:
9ad0a4588b

Signed-off-by: wangxiyuan <wangxiyuan1007@gmail.com>
2025-07-15 12:49:57 +08:00

242 lines
9.4 KiB
Python

#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This file is a part of the vllm-ascend project.
#
import os
from transformers import PretrainedConfig
from vllm.config import ModelConfig, VllmConfig
from tests.ut.base import TestBase
from vllm_ascend.ascend_config import (_check_torchair_supported,
check_ascend_config,
clear_ascend_config, get_ascend_config,
init_ascend_config)
class TestAscendConfig(TestBase):
@staticmethod
def _clean_up_ascend_config(func):
def wrapper(*args, **kwargs):
clear_ascend_config()
func(*args, **kwargs)
clear_ascend_config()
return wrapper
@_clean_up_ascend_config
def test_init_ascend_config_without_additional_config(self):
test_vllm_config = VllmConfig()
# No additional config given, check the default value here.
ascend_config = init_ascend_config(test_vllm_config)
self.assertEqual(ascend_config.expert_tensor_parallel_size, 0)
self.assertIsNone(ascend_config.expert_map_path)
torchair_graph_config = ascend_config.torchair_graph_config
self.assertFalse(torchair_graph_config.enabled)
self.assertFalse(torchair_graph_config.use_cached_graph)
self.assertEqual(torchair_graph_config.graph_batch_sizes, [])
self.assertFalse(torchair_graph_config.graph_batch_sizes_init)
self.assertFalse(torchair_graph_config.enable_multistream_mla)
self.assertFalse(torchair_graph_config.enable_multistream_moe)
self.assertTrue(torchair_graph_config.enable_view_optimize)
self.assertFalse(torchair_graph_config.enable_kv_nz)
ascend_scheduler_config = ascend_config.ascend_scheduler_config
self.assertFalse(ascend_scheduler_config.enabled)
@_clean_up_ascend_config
def test_init_ascend_config_with_additional_config(self):
test_vllm_config = VllmConfig()
test_vllm_config.additional_config = {
"torchair_graph_config": {
"enabled": True,
"use_cached_graph": True,
"graph_batch_sizes": [1, 2, 4],
"graph_batch_sizes_init": False,
"enable_multistream_mla": True,
"enable_multistream_moe": True,
"enable_view_optimize": True,
"enable_kv_nz": True
},
"ascend_scheduler_config": {
"enabled": True
},
"expert_tensor_parallel_size": 1,
"expert_map_path": "test_expert_map_path",
"refresh": True
}
ascend_config = init_ascend_config(test_vllm_config)
self.assertEqual(ascend_config.expert_tensor_parallel_size, 1)
self.assertEqual(ascend_config.expert_map_path, "test_expert_map_path")
torchair_graph_config = ascend_config.torchair_graph_config
self.assertTrue(torchair_graph_config.enabled)
self.assertTrue(torchair_graph_config.use_cached_graph)
self.assertEqual(torchair_graph_config.graph_batch_sizes, [1, 2, 4])
self.assertFalse(torchair_graph_config.graph_batch_sizes_init)
self.assertTrue(torchair_graph_config.enable_multistream_mla)
self.assertTrue(torchair_graph_config.enable_multistream_moe)
self.assertTrue(torchair_graph_config.enable_view_optimize)
self.assertTrue(torchair_graph_config.enable_kv_nz)
ascend_scheduler_config = ascend_config.ascend_scheduler_config
self.assertTrue(ascend_scheduler_config.enabled)
@_clean_up_ascend_config
def test_init_ascend_config_with_refresh(self):
test_vllm_config = VllmConfig()
ascend_config = init_ascend_config(test_vllm_config)
self.assertFalse(ascend_config.torchair_graph_config.enabled)
test_vllm_config.additional_config = {
"torchair_graph_config": {
"enabled": True,
},
}
ascend_config = init_ascend_config(test_vllm_config)
self.assertFalse(ascend_config.torchair_graph_config.enabled)
test_vllm_config.additional_config = {
"torchair_graph_config": {
"enabled": True,
},
"refresh": True,
}
ascend_config = init_ascend_config(test_vllm_config)
self.assertTrue(ascend_config.torchair_graph_config.enabled)
@_clean_up_ascend_config
def test_init_ascend_config_with_wrong_input(self):
test_vllm_config = VllmConfig()
test_vllm_config.additional_config = {
"torchair_graph_config": {
"enabled": True,
"graph_batch_sizes": "fake_size",
},
"refresh": True,
}
with self.assertRaises(TypeError):
init_ascend_config(test_vllm_config)
test_vllm_config.additional_config = {
"torchair_graph_config": {
"enabled": False,
"graph_batch_sizes": [1, 2, 4, 8],
"graph_batch_sizes_init": True,
},
"refresh": True,
}
with self.assertRaises(ValueError):
init_ascend_config(test_vllm_config)
@_clean_up_ascend_config
def test_get_ascend_config(self):
test_vllm_config = VllmConfig()
ascend_config = init_ascend_config(test_vllm_config)
self.assertEqual(get_ascend_config(), ascend_config)
@_clean_up_ascend_config
def test_get_ascend_config_without_init(self):
with self.assertRaises(RuntimeError):
get_ascend_config()
@_clean_up_ascend_config
def test_clear_ascend_config(self):
test_vllm_config = VllmConfig()
ascend_config = init_ascend_config(test_vllm_config)
self.assertEqual(get_ascend_config(), ascend_config)
clear_ascend_config()
with self.assertRaises(RuntimeError):
get_ascend_config()
@_clean_up_ascend_config
def test_check_ascend_config_pass(self):
test_vllm_config = VllmConfig()
init_ascend_config(test_vllm_config)
check_ascend_config(test_vllm_config, False)
test_vllm_config.additional_config = {
"torchair_graph_config": {
"enabled": True,
},
"refresh": True
}
init_ascend_config(test_vllm_config)
check_ascend_config(test_vllm_config, False)
test_vllm_config.additional_config = {
"torchair_graph_config": {
"enabled": False,
},
"refresh": True
}
init_ascend_config(test_vllm_config)
check_ascend_config(test_vllm_config, False)
@_clean_up_ascend_config
def test_check_ascend_config_wrong_case(self):
test_vllm_config = VllmConfig()
# torchair + eager mode
with self.assertRaises(RuntimeError):
test_vllm_config.additional_config = {
"torchair_graph_config": {
"enabled": True,
},
"refresh": True
}
init_ascend_config(test_vllm_config)
enforce_eager = True
check_ascend_config(test_vllm_config, enforce_eager)
# torchair + non deepseek model
with self.assertRaises(NotImplementedError):
test_vllm_config.additional_config = {
"torchair_graph_config": {
"enabled": True,
},
"refresh": True
}
model_path = os.path.join(os.path.dirname(__file__), "fake_weight")
fake_model_config = ModelConfig(model=model_path)
fake_model_config.hf_config = PretrainedConfig()
fake_model_config.hf_config.model_type = "llama"
test_vllm_config.model_config = fake_model_config
init_ascend_config(test_vllm_config)
check_ascend_config(test_vllm_config, False)
# aclgraph + deepseek model
with self.assertRaises(NotImplementedError):
test_vllm_config.additional_config = {
"torchair_graph_config": {
"enabled": False,
},
"refresh": True
}
model_path = os.path.join(os.path.dirname(__file__), "fake_weight")
fake_model_config = ModelConfig(model=model_path)
fake_model_config.hf_config = PretrainedConfig()
fake_model_config.hf_config.model_type = "deepseek"
test_vllm_config.model_config = fake_model_config
init_ascend_config(test_vllm_config)
check_ascend_config(test_vllm_config, False)
def test_check_torchair_supported(self):
test_cases = [('deepseek_v3', True), ('PanguProMoE', True),
('qwen', False), ('llama', False)]
for model_type, expected_output in test_cases:
self.assertEqual(_check_torchair_supported(model_type),
expected_output)