Files
vllm-ascend/tests/e2e/singlecard/test_embedding.py
wangxiyuan 787010a637 [Test] Remove VLLM_USE_V1 in example and tests (#1733)
V1 is enabled by default, no need to set it by hand now. This PR remove
the useless setting in example and tests

- vLLM version: v0.9.2
- vLLM main:
9ad0a4588b

Signed-off-by: wangxiyuan <wangxiyuan1007@gmail.com>
2025-07-15 12:49:57 +08:00

69 lines
2.1 KiB
Python

#
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
# Copyright 2023 The vLLM team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This file is a part of the vllm-ascend project.
# Adapted from vllm/tests/basic_correctness/test_basic_correctness.py
#
from collections.abc import Sequence
from typing import Optional
from modelscope import snapshot_download # type: ignore[import-untyped]
from tests.e2e.conftest import HfRunner
from tests.e2e.utils import check_embeddings_close, matryoshka_fy
def run_embedding_correctness_test(
hf_model: "HfRunner",
inputs: list[str],
vllm_outputs: Sequence[list[float]],
dimensions: Optional[int] = None,
):
hf_outputs = hf_model.encode(inputs)
if dimensions:
hf_outputs = matryoshka_fy(hf_outputs, dimensions)
check_embeddings_close(
embeddings_0_lst=hf_outputs,
embeddings_1_lst=vllm_outputs,
name_0="hf",
name_1="vllm",
tol=1e-2,
)
# dummy to avoid pytest collect nothing and exit code 5
def test_dummy():
assert True
def test_embed_models_correctness(hf_runner, vllm_runner):
queries = ['What is the capital of China?', 'Explain gravity']
model_name = snapshot_download("Qwen/Qwen3-Embedding-0.6B")
with vllm_runner(
model_name,
task="embed",
enforce_eager=True,
) as vllm_model:
vllm_outputs = vllm_model.encode(queries)
with hf_runner(
model_name,
dtype="float32",
is_sentence_transformer=True,
) as hf_model:
run_embedding_correctness_test(hf_model, queries, vllm_outputs)