Files
vllm-ascend/tests/e2e/singlecard/test_camem.py
wangxiyuan 787010a637 [Test] Remove VLLM_USE_V1 in example and tests (#1733)
V1 is enabled by default, no need to set it by hand now. This PR remove
the useless setting in example and tests

- vLLM version: v0.9.2
- vLLM main:
9ad0a4588b

Signed-off-by: wangxiyuan <wangxiyuan1007@gmail.com>
2025-07-15 12:49:57 +08:00

86 lines
2.9 KiB
Python

#
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
# This file is a part of the vllm-ascend project.
# Adapted from vllm/tests/basic_correctness/test_basic_correctness.py
# Copyright 2023 The vLLM team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import torch
from vllm import LLM, SamplingParams
from vllm.utils import GiB_bytes
from tests.e2e.utils import fork_new_process_for_each_test
from vllm_ascend.device_allocator.camem import CaMemAllocator
@fork_new_process_for_each_test
def test_basic_camem():
# some tensors from default memory pool
shape = (1024, 1024)
x = torch.empty(shape, device='npu:0')
x.zero_()
# some tensors from custom memory pool
allocator = CaMemAllocator.get_instance()
with allocator.use_memory_pool():
# custom memory pool
y = torch.empty(shape, device='npu:0')
y.zero_()
y += 1
z = torch.empty(shape, device='npu:0')
z.zero_()
z += 2
# they can be used together
output = x + y + z
assert torch.allclose(output, torch.ones_like(output) * 3)
free_bytes = torch.npu.mem_get_info()[0]
allocator.sleep()
free_bytes_after_sleep = torch.npu.mem_get_info()[0]
assert free_bytes_after_sleep > free_bytes
allocator.wake_up()
# they can be used together
output = x + y + z
assert torch.allclose(output, torch.ones_like(output) * 3)
@fork_new_process_for_each_test
def test_end_to_end():
free, total = torch.npu.mem_get_info()
used_bytes_baseline = total - free # in case other process is running
llm = LLM("Qwen/Qwen2.5-0.5B-Instruct", enable_sleep_mode=True)
prompt = "How are you?"
sampling_params = SamplingParams(temperature=0, max_tokens=10)
output = llm.generate(prompt, sampling_params)
# the benefit of `llm.sleep(level=2)` is mainly CPU memory usage,
# which is difficult to measure in the test. therefore, we only
# test sleep level 1 here.
llm.sleep(level=1)
free_gpu_bytes_after_sleep, total = torch.npu.mem_get_info()
used_bytes = total - free_gpu_bytes_after_sleep - used_bytes_baseline
# now the memory usage should be less than the model weights
# (0.5B model, 1GiB weights)
assert used_bytes < 1 * GiB_bytes
llm.wake_up()
output2 = llm.generate(prompt, sampling_params)
# cmp output
assert output[0].outputs[0].text == output2[0].outputs[0].text