Files
vllm-ascend/tests/e2e/singlecard/test_aclgraph.py
wangxiyuan 787010a637 [Test] Remove VLLM_USE_V1 in example and tests (#1733)
V1 is enabled by default, no need to set it by hand now. This PR remove
the useless setting in example and tests

- vLLM version: v0.9.2
- vLLM main:
9ad0a4588b

Signed-off-by: wangxiyuan <wangxiyuan1007@gmail.com>
2025-07-15 12:49:57 +08:00

87 lines
2.8 KiB
Python

#
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
# Copyright 2023 The vLLM team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
"""
Compare the outputs of vLLM with and without aclgraph.
Run `pytest tests/compile/test_aclgraph.py`.
"""
import pytest
import torch
from vllm import LLM, SamplingParams
from tests.e2e.conftest import VllmRunner
from tests.e2e.model_utils import check_outputs_equal
MODELS = [
"Qwen/Qwen2.5-0.5B-Instruct",
# TODO: REVERT ME when oom is fixed
# "vllm-ascend/Qwen3-30B-A3B-Puring"
]
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("max_tokens", [32])
def test_models(
model: str,
max_tokens: int,
) -> None:
prompts = [
"Hello, my name is", "The president of the United States is",
"The capital of France is", "The future of AI is"
]
sampling_params = SamplingParams(max_tokens=max_tokens, temperature=0.0)
# TODO: change to use vllmrunner when the registry of custom op is solved
# while running pytest
vllm_model = LLM(model)
vllm_aclgraph_outputs = vllm_model.generate(prompts, sampling_params)
del vllm_model
torch.npu.empty_cache()
vllm_model = LLM(model, enforce_eager=True)
vllm_eager_outputs = vllm_model.generate(prompts, sampling_params)
del vllm_model
torch.npu.empty_cache()
vllm_aclgraph_outputs_list = []
for output in vllm_aclgraph_outputs:
vllm_aclgraph_outputs_list.append(
(output.outputs[0].index, output.outputs[0].text))
vllm_eager_outputs_list = []
for output in vllm_eager_outputs:
vllm_eager_outputs_list.append(
(output.outputs[0].index, output.outputs[0].text))
check_outputs_equal(
outputs_0_lst=vllm_eager_outputs_list,
outputs_1_lst=vllm_aclgraph_outputs_list,
name_0="vllm_eager_outputs",
name_1="vllm_aclgraph_outputs",
)
def test_deepseek_raises_error(monkeypatch: pytest.MonkeyPatch) -> None:
with monkeypatch.context() as m:
m.setenv("VLLM_USE_MODELSCOPE", "True")
with pytest.raises(NotImplementedError) as excinfo:
VllmRunner("deepseek-ai/DeepSeek-V2-Lite-Chat",
max_model_len=1024,
enforce_eager=False)
assert "ACL Graph does not support deepseek" in str(excinfo.value)