Files
vllm-ascend/tests/e2e/multicard/test_torchair_graph_mode.py
wangxiyuan 787010a637 [Test] Remove VLLM_USE_V1 in example and tests (#1733)
V1 is enabled by default, no need to set it by hand now. This PR remove
the useless setting in example and tests

- vLLM version: v0.9.2
- vLLM main:
9ad0a4588b

Signed-off-by: wangxiyuan <wangxiyuan1007@gmail.com>
2025-07-15 12:49:57 +08:00

154 lines
4.9 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
# Copyright 2023 The vLLM team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This file is a part of the vllm-ascend project.
#
"""Compare the short outputs of HF and vLLM when using greedy sampling.
Run `pytest tests/multicard/test_torchair_graph_mode.py`.
"""
import os
from typing import Dict
from tests.e2e.conftest import VllmRunner
os.environ["PYTORCH_NPU_ALLOC_CONF"] = "max_split_size_mb:256"
def _deepseek_torchair_test_fixture(
additional_config: Dict,
*,
tensor_parallel_size=4,
):
example_prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
# torchair is only work without chunked-prefill now
kwargs = {
"ascend_scheduler_config": {
"enabled": True,
},
"refresh": True,
}
additional_config.update(**kwargs)
with VllmRunner(
"vllm-ascend/DeepSeek-V3-Pruning",
dtype="half",
tensor_parallel_size=tensor_parallel_size,
distributed_executor_backend="mp",
enforce_eager=False,
additional_config=additional_config,
) as vllm_model:
# use greedy sampler to make sure the generated results are fix
vllm_output = vllm_model.generate_greedy(example_prompts, 5)
# NOTE: vllm-ascend/DeepSeek-V3-Pruning is a random weight of
# DeepSeek-V3 with 2 hidden layers, thus the golden results seems
# inaccurate. This will only change if accuracy improves with the
# official weights of DeepSeek-V3.
golden_results = [
'Hello, my name is下载早点向前很有่อง',
'The president of the United States isSender)## physiological Albany',
'The capital of France is Rocky转角 hospitalizedinterval sparked',
'The future of AI is её asegο BIOS一扫',
]
assert len(golden_results) == len(vllm_output)
for i in range(len(vllm_output)):
assert golden_results[i] == vllm_output[i][1]
print(f"Generated text: {vllm_output[i][1]!r}")
def test_e2e_deepseekv3_with_torchair():
additional_config = {
"torchair_graph_config": {
"enabled": True,
},
}
_deepseek_torchair_test_fixture(additional_config)
def test_e2e_deepseekv3_with_torchair_ms_mla():
additional_config = {
"torchair_graph_config": {
"enabled": True,
"enable_multistream_mla": True,
},
}
_deepseek_torchair_test_fixture(additional_config)
def _pangu_torchair_test_fixture(
additional_config: Dict,
*,
tensor_parallel_size=4,
):
example_prompts = [
"Hello, my name is",
"The president of the United States is",
"The capital of France is",
"The future of AI is",
]
# torchair is only work without chunked-prefill now
kwargs = {
"ascend_scheduler_config": {
"enabled": True,
},
"refresh": True,
}
additional_config.update(**kwargs)
with VllmRunner(
"vllm-ascend/pangu-pro-moe-pruing",
dtype="half",
tensor_parallel_size=tensor_parallel_size,
distributed_executor_backend="mp",
enforce_eager=False,
additional_config=additional_config,
) as vllm_model:
# use greedy sampler to make sure the generated results are fix
vllm_output = vllm_model.generate_greedy(example_prompts, 5)
# NOTE: vllm-ascend/pangu-pro-moe-pruing is only part of PanguProMoE
# with 2 hidden layers, thus the golden results seems inaccurate.
# This will only change if accuracy changes with the official weights
# of PanguProMoE.
golden_results = [
'Hello, my name is Remempondeprecatedmiot忱',
'The president of the United States is Remem下的一个 rever ceremoni Segnali',
'The capital of France is Rememvoud administrativ Remem投',
'The future of AI isotope Segnali Zoeken精细化 supus',
]
assert len(golden_results) == len(vllm_output)
for i in range(len(vllm_output)):
assert golden_results[i] == vllm_output[i][1]
print(f"Generated text: {vllm_output[i][1]!r}")
def test_e2e_pangu_with_torchair():
additional_config = {
"torchair_graph_config": {
"enabled": True,
},
}
_pangu_torchair_test_fixture(additional_config)