Files
vllm-ascend/examples/disaggregated_prefill/disaggregated_prefill_offline.py
Mengqing Cao 6eddbd2521 [CI/UT][PD Disaggreate] Initialize PD Disaggreate UT (#889)
Initialize PD Disaggreate UT

---------

Signed-off-by: MengqingCao <cmq0113@163.com>
2025-05-29 10:17:12 +08:00

139 lines
4.3 KiB
Python

"""
This file demonstrates the example usage of disaggregated prefilling
We will launch 2 vllm instances (NPU 0,1 for prefill and NPU 2,3 for decode),
and then transfer the KV cache between them.
prompy_device_ips denotes device ip of NPU 0,1
decode_device_ips denotes device ip of NPU 2,3
The device ips of all NPUs in current server can be found through
examples/disaggregated_prefill/find_device_ips.py
"""
import multiprocessing as mp
import os
import time
from multiprocessing import Event, Process
kv_connector_extra_config = {
"prefill_device_ips": ["1.2.3.1", "1.2.3.2"],
"decode_device_ips": ["1.2.3.9", "1.2.3.10"],
"llmdatadist_comm_port": 26000,
}
def clean_up():
import gc
import torch
from vllm.distributed.parallel_state import (
destroy_distributed_environment, destroy_model_parallel)
destroy_model_parallel()
destroy_distributed_environment()
gc.collect()
torch.npu.empty_cache()
def run_prefill(prefill_done, process_close):
os.environ["ASCEND_RT_VISIBLE_DEVICES"] = "0,1"
from vllm import LLM, SamplingParams
from vllm.config import KVTransferConfig
prompts = [
"Hello, how are you today?", "Hi, what is your name?",
"Tell me a very long story.", "what is your favourite book?"
]
sampling_params = SamplingParams(temperature=0, top_p=0.95, max_tokens=1)
ktc = KVTransferConfig.from_cli(
'{"kv_connector":"AscendSimpleConnector","kv_buffer_device":"npu","kv_role":"kv_producer", "kv_parallel_size":2}'
)
global kv_connector_extra_config
ktc.kv_connector_extra_config = kv_connector_extra_config
llm = LLM(model="deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
kv_transfer_config=ktc,
max_model_len=2000,
gpu_memory_utilization=0.8,
tensor_parallel_size=2)
llm.generate(prompts, sampling_params)
print("Prefill node is finished.")
prefill_done.set()
# To keep the prefill node running in case the decode node is not done;
# otherwise, the script might exit prematurely, causing incomplete decoding.
try:
while not process_close.is_set():
time.sleep(1)
except KeyboardInterrupt:
print("Script stopped by user.")
finally:
print("Cleanup prefill resources")
del llm
clean_up()
def run_decode(prefill_done):
os.environ["ASCEND_RT_VISIBLE_DEVICES"] = "2,3"
from vllm import LLM, SamplingParams
from vllm.config import KVTransferConfig
prompts = [
"Hello, how are you today?",
"Hi, what is your name?",
]
sampling_params = SamplingParams(temperature=0, top_p=0.95)
ktc = KVTransferConfig.from_cli(
'{"kv_connector":"AscendSimpleConnector","kv_buffer_device":"npu","kv_role":"kv_consumer","kv_parallel_size":2}'
)
global kv_connector_extra_config
ktc.kv_connector_extra_config = kv_connector_extra_config
llm = LLM(model="deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
kv_transfer_config=ktc,
max_model_len=2000,
gpu_memory_utilization=0.8,
tensor_parallel_size=2)
# Wait for the producer to start the consumer
print("Waiting for prefill node to finish...")
prefill_done.wait()
# At this point when the prefill_done is set, the kv-cache should have been
# transferred to this decode node, so we can start decoding.
outputs = llm.generate(prompts, sampling_params)
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
del llm
clean_up()
if __name__ == "__main__":
mp.get_context('spawn')
prefill_done = Event()
process_close = Event()
prefill_process = Process(target=run_prefill,
args=(
prefill_done,
process_close,
))
decode_process = Process(target=run_decode, args=(prefill_done, ))
# Start prefill node
prefill_process.start()
# Start decode node
decode_process.start()
# Terminate the prefill node when decode is finished
decode_process.join()
# Terminate prefill process
process_close.set()
prefill_process.join()
prefill_process.terminate()
print("All process done!")