Files
vllm-ascend/vllm_ascend/models/qwen2_5_vl.py
Mengqing Cao 61866b8ac6 [Quickfix] update CachedRequestState as NewRequestData changed (#2367)
### What this PR does / why we need it?
1. update `CachedRequestState` as `NewRequestData` changed in
https://github.com/vllm-project/vllm/pull/22570
2. drop maintenance of vllm v0.10.0 in the branch main

### Does this PR introduce _any_ user-facing change?
N/A

### How was this patch tested?
CI passed with existing test.


- vLLM version: v0.10.0
- vLLM main:
92ff41abea

---------

Signed-off-by: MengqingCao <cmq0113@163.com>
2025-08-15 07:35:27 +08:00

492 lines
21 KiB
Python

#
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
# Adapted from vllm/model_executor/models/qwen2_5_vl.py
# Copyright 2023 The vLLM team.
#
# This file is a part of the vllm-ascend project.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
from typing import Callable, Iterable, Optional, Set, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch_npu
from einops import rearrange
from transformers.models.qwen2_5_vl.configuration_qwen2_5_vl import (
Qwen2_5_VLConfig, Qwen2_5_VLVisionConfig)
from vllm.config import VllmConfig
from vllm.distributed import parallel_state
from vllm.distributed import utils as dist_utils
from vllm.model_executor.layers.activation import get_act_and_mul_fn
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.models.qwen2_5_vl import (
Qwen2_5_VisionAttention, Qwen2_5_VisionBlock, Qwen2_5_VisionPatchEmbed,
Qwen2_5_VisionRotaryEmbedding, Qwen2_5_VisionTransformer,
Qwen2_5_VLDummyInputsBuilder, Qwen2_5_VLForConditionalGeneration,
Qwen2_5_VLMultiModalProcessor, Qwen2_5_VLProcessingInfo)
from vllm.model_executor.models.utils import maybe_prefix
from vllm.multimodal import MULTIMODAL_REGISTRY
MIN_PAD_SIZE = 64 # min_size to pad weight
MAX_PAD_SIZE = 128 # max_size to pad weight
class AscendQwen2_5_VisionAttention(Qwen2_5_VisionAttention):
def __init__(
self,
embed_dim: int,
num_heads: int,
projection_size: int,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__(
embed_dim,
num_heads,
projection_size,
quant_config,
prefix,
)
self.embed_dim = embed_dim
self.hidden_size_per_attention_head = dist_utils.divide(
projection_size, num_heads)
self.origin_hidden_size_per_attention_head = self.hidden_size_per_attention_head
if self.hidden_size_per_attention_head > MIN_PAD_SIZE and self.hidden_size_per_attention_head < MAX_PAD_SIZE:
self.hidden_size_per_attention_head = MAX_PAD_SIZE
def split_qkv(self, qkv: torch.Tensor) -> tuple[torch.Tensor, ...]:
# [s, b, 3 * head * head_dim]
seq_len, bs, _ = qkv.shape
# [s, b, 3 * head * head_dim] -> 3 * [s, b, head * head_dim]
q, k, v = qkv.chunk(3, dim=2)
# 3 * [s, b, head * head_dim] -> 3 * [s, b, head, head_dim]
new_shape = (seq_len, bs, self.num_attention_heads_per_partition,
self.hidden_size_per_attention_head)
q, k, v = (x.view(*new_shape) for x in (q, k, v))
return q, k, v
def forward(
self,
x: torch.Tensor,
cu_seqlens: torch.Tensor,
cos: torch.Tensor,
sin: torch.Tensor,
) -> torch.Tensor:
# [s, b, c] --> [s, b, head * 3 * head_dim]
x, _ = self.qkv(x)
# [s, b, 3 * head * head_dim] -> 3 * [s, b, head, head_dim]
q, k, v = self.split_qkv(x)
batch_size = q.shape[1]
q, k, v = (rearrange(x, "s b ... -> b s ...").contiguous()
for x in (q, k, v))
q = torch_npu.npu_rotary_mul(q, cos, sin)
k = torch_npu.npu_rotary_mul(k, cos, sin)
q, k, v = [
rearrange(x, "b s h d -> (b s) h d").contiguous()
for x in (q, k, v)
]
context_layer = torch.empty_like(q)
# operator requires pta version >= 2.5.1
torch_npu._npu_flash_attention_unpad(
query=q,
key=k,
value=v,
seq_len=cu_seqlens,
scale_value=self.origin_hidden_size_per_attention_head**-0.5,
num_heads=self.num_attention_heads_per_partition,
num_kv_heads=self.num_attention_heads_per_partition,
out=context_layer)
context_layer = rearrange(context_layer,
"(b s) h d -> s b (h d)",
b=batch_size).contiguous()
output, _ = self.proj(context_layer)
return output
class AscendQwen2_5_VisionBlock(Qwen2_5_VisionBlock):
def __init__(
self,
dim: int,
num_heads: int,
mlp_hidden_dim: int,
act_fn: Callable[[torch.Tensor], torch.Tensor] = F.silu,
norm_layer: Optional[Callable[[int], nn.Module]] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__(dim, num_heads, mlp_hidden_dim, act_fn, norm_layer,
quant_config, prefix)
self.attn = AscendQwen2_5_VisionAttention(embed_dim=dim,
num_heads=num_heads,
projection_size=dim,
quant_config=quant_config,
prefix=f"{prefix}.attn")
def forward(self, x: torch.Tensor, cu_seqlens: torch.Tensor,
cos: torch.Tensor, sin: torch.Tensor) -> torch.Tensor:
x = x + self.attn(
self.norm1(x), cu_seqlens=cu_seqlens, cos=cos, sin=sin)
x = x + self.mlp(self.norm2(x))
return x
class AscendQwen2_5_VisionPatchEmbed(Qwen2_5_VisionPatchEmbed):
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = x.matmul(
self.proj.weight.data.view(self.hidden_size, -1).transpose(0, 1))
return x
class AscendQwen2_5_VisionRotaryEmbedding(Qwen2_5_VisionRotaryEmbedding):
def __init__(self, dim: int, theta: float = 10000.0) -> None:
super().__init__(dim, theta)
inv_freq = 1.0 / (theta
**(torch.arange(0, dim, 2, dtype=torch.float) / dim))
self.inv_freq = inv_freq
class AscendQwen2_5_VisionTransformer(Qwen2_5_VisionTransformer):
def __init__(
self,
vision_config: Qwen2_5_VLVisionConfig,
norm_eps: float = 1e-6,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
interleaved=False,
) -> None:
super().__init__(vision_config, norm_eps, quant_config, prefix)
norm_layer = partial(RMSNorm, eps=norm_eps)
self.interleaved = interleaved
self.enable_pad = False
head_dim = self.hidden_size // self.num_heads
self.rotary_pos_emb = AscendQwen2_5_VisionRotaryEmbedding(head_dim //
2)
self.patch_embed = AscendQwen2_5_VisionPatchEmbed(
patch_size=vision_config.patch_size,
temporal_patch_size=vision_config.temporal_patch_size,
in_channels=vision_config.in_channels,
hidden_size=self.hidden_size,
)
act_fn = get_act_and_mul_fn(vision_config.hidden_act)
self.blocks = nn.ModuleList([
AscendQwen2_5_VisionBlock(
dim=self.hidden_size,
num_heads=self.num_heads,
mlp_hidden_dim=vision_config.intermediate_size,
act_fn=act_fn,
norm_layer=norm_layer,
quant_config=quant_config,
prefix=f"{prefix}.blocks.{layer_idx}")
for layer_idx in range(vision_config.depth)
])
self.tp_size = parallel_state.get_tensor_model_parallel_world_size()
self.tp_rank = parallel_state.get_tensor_model_parallel_rank()
self.hidden_size_per_attention_head = dist_utils.divide(
self.hidden_size, self.num_heads)
if self.hidden_size_per_attention_head > MIN_PAD_SIZE and self.hidden_size_per_attention_head < MAX_PAD_SIZE:
self.enable_pad = True
self.origin_hidden_size_per_attention_head = self.hidden_size_per_attention_head
self.half_origin_hidden_size_per_attention_head = self.hidden_size_per_attention_head // 2
self.half_pad_hidden_size_per_attention_head = (
MAX_PAD_SIZE - self.hidden_size_per_attention_head) // 2
self.hidden_size_per_attention_head = MAX_PAD_SIZE
def cal_cos_sin(self, rotary_pos_emb):
cos = rotary_pos_emb.cos() # [seqlen, rotary_dim / 2]
sin = rotary_pos_emb.sin()
if self.enable_pad:
cos = torch.nn.functional.pad(
cos, (0, self.half_pad_hidden_size_per_attention_head))
sin = torch.nn.functional.pad(
sin, (0, self.half_pad_hidden_size_per_attention_head))
if not self.interleaved:
cos_new = torch.cat((cos, cos), dim=-1)
sin_new = torch.cat((sin, sin), dim=-1)
else:
cos_new = rearrange(torch.stack((cos, cos), dim=-1),
"... d two -> ...(d two)",
two=2)
sin_new = rearrange(torch.stack((sin, sin), dim=-1),
"... d two -> ...(d two)",
two=2)
cos_new = cos_new.reshape(1, -1, 1,
self.hidden_size_per_attention_head)
sin_new = sin_new.reshape(1, -1, 1,
self.hidden_size_per_attention_head)
return cos_new, sin_new
def pad_qkv_bias(self, bias):
first_half = bias.reshape(
-1, 3, self.origin_hidden_size_per_attention_head
)[:, :, :self.half_origin_hidden_size_per_attention_head]
second_half = bias.reshape(
-1, 3, self.origin_hidden_size_per_attention_head
)[:, :, self.half_origin_hidden_size_per_attention_head:]
first_half_padded = torch.nn.functional.pad(
first_half, (0, self.half_pad_hidden_size_per_attention_head))
second_half_padded = torch.nn.functional.pad(
second_half, (0, self.half_pad_hidden_size_per_attention_head))
bias_padded = torch.cat([first_half_padded, second_half_padded], dim=2)
bias_final = bias_padded.reshape(-1)
return bias_final
def pad_qkv_weight(self, data):
qkv_weight_first_half = data.reshape(
-1, 3, self.origin_hidden_size_per_attention_head, self.hidden_size
)[:, :, :self.half_origin_hidden_size_per_attention_head, :]
qkv_weight_second_half = data.reshape(
-1, 3, self.origin_hidden_size_per_attention_head, self.hidden_size
)[:, :, self.half_origin_hidden_size_per_attention_head:, :]
qkv_weight_first_half_padded = torch.nn.functional.pad(
qkv_weight_first_half,
(0, 0, 0, self.half_pad_hidden_size_per_attention_head))
qkv_weight_second_half_padded = torch.nn.functional.pad(
qkv_weight_second_half,
(0, 0, 0, self.half_pad_hidden_size_per_attention_head))
qkv_weight_padded = torch.cat(
[qkv_weight_first_half_padded, qkv_weight_second_half_padded],
dim=2)
qkv_weight_final = qkv_weight_padded.reshape(-1, self.hidden_size)
return qkv_weight_final
def pad_proj_weight(self, data):
out_weight = torch.nn.functional.pad(
data.reshape(self.hidden_size, -1,
self.half_origin_hidden_size_per_attention_head),
(0, self.half_pad_hidden_size_per_attention_head, 0, 0)).reshape(
self.hidden_size, -1)
return out_weight
def load_weights(self, weights: Iterable[Tuple[str,
torch.Tensor]]) -> Set[str]:
stacked_params_mapping: list[tuple[str, str, Union[str, int]]] = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
("mlp.gate_up_proj.", "mlp.gate_proj.", 0),
("mlp.gate_up_proj.", "mlp.up_proj.", 1),
]
params_dict = dict(self.named_parameters(remove_duplicate=False))
loaded_params: Set[str] = set()
for name, loaded_weight in weights:
for (param_name, weight_name, shard_id) in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
if ("attn.proj.weight" in name) and self.enable_pad:
param.data = self.pad_proj_weight(param.data)
if ("attn.qkv.weight" in name) and self.enable_pad:
param.data = self.pad_qkv_weight(param.data)
if ("attn.qkv.bias" in name) and self.enable_pad:
param.data = self.pad_qkv_bias(param.data)
loaded_params.add(name)
return loaded_params
def rot_pos_emb(self, grid_thw: torch.Tensor) -> torch.Tensor:
pos_ids = []
for t, h, w in grid_thw:
hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
hpos_ids = hpos_ids.reshape(
h // self.spatial_merge_size,
self.spatial_merge_size,
w // self.spatial_merge_size,
self.spatial_merge_size,
).permute(0, 2, 1, 3).flatten()
wpos_ids = wpos_ids.reshape(
h // self.spatial_merge_size,
self.spatial_merge_size,
w // self.spatial_merge_size,
self.spatial_merge_size,
).permute(0, 2, 1, 3).flatten()
pos_ids.append(
torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
pos_ids = torch.cat(pos_ids, dim=0)
max_grid_size = grid_thw[:, 1:].max()
rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
return rotary_pos_emb
def get_window_index(self, grid_thw):
window_index: list = []
cu_window_seqlens: list = [0]
window_index_id = 0
vit_merger_window_size = (self.window_size //
self.spatial_merge_size // self.patch_size)
for grid_t, grid_h, grid_w in grid_thw:
llm_grid_h = grid_h // self.spatial_merge_size
llm_grid_w = grid_w // self.spatial_merge_size
index = torch.arange(grid_t * llm_grid_h * llm_grid_w).reshape(
grid_t, llm_grid_h, llm_grid_w)
pad_h = vit_merger_window_size - llm_grid_h % vit_merger_window_size
pad_w = vit_merger_window_size - llm_grid_w % vit_merger_window_size
num_windows_h = (llm_grid_h + pad_h) // vit_merger_window_size
num_windows_w = (llm_grid_w + pad_w) // vit_merger_window_size
index_padded = F.pad(index, (0, pad_w, 0, pad_h), 'constant', -100)
index_padded = index_padded.reshape(grid_t, num_windows_h,
vit_merger_window_size,
num_windows_w,
vit_merger_window_size)
index_padded = index_padded.permute(0, 1, 3, 2, 4).reshape(
grid_t, num_windows_h * num_windows_w, vit_merger_window_size,
vit_merger_window_size)
seqlens = (index_padded != -100).sum([2, 3]).reshape(-1)
index_padded = index_padded.reshape(-1)
index_new = index_padded[index_padded != -100]
window_index.append(index_new + window_index_id)
cu_seqlens_tmp = seqlens.cumsum(
0) * self.spatial_merge_unit + cu_window_seqlens[-1]
cu_window_seqlens.extend(cu_seqlens_tmp.tolist())
window_index_id += (grid_t * llm_grid_h * llm_grid_w).item()
window_index = torch.cat(window_index, dim=0)
return window_index, cu_window_seqlens
def forward(
self,
x: torch.Tensor,
grid_thw: torch.Tensor,
) -> torch.Tensor:
# compute cu_seqlens
cu_seqlens = torch.repeat_interleave(grid_thw[:, 1] * grid_thw[:, 2],
grid_thw[:,
0]).cpu().to(torch.int32)
# patchify
x = self.patch_embed(x)
# compute position embedding
rotary_pos_emb = self.rot_pos_emb(grid_thw)
# windows attention
window_index, cu_window_seqlens = self.get_window_index(grid_thw)
cu_window_seqlens = torch.tensor(
cu_window_seqlens,
device=x.device,
dtype=grid_thw.dtype if torch.jit.is_tracing() else torch.int32)
cu_window_seqlens = torch.unique_consecutive(cu_window_seqlens)
cu_window_seqlens = torch.diff(cu_window_seqlens).cpu().to(torch.int32)
seq_len, _ = x.size()
x = x.reshape(seq_len // self.spatial_merge_unit,
self.spatial_merge_unit, -1)
x = x[window_index, :, :]
x = x.reshape(seq_len, -1)
rotary_pos_emb = rotary_pos_emb.reshape(
seq_len // self.spatial_merge_unit, self.spatial_merge_unit, -1)
rotary_pos_emb = rotary_pos_emb[window_index, :, :]
rotary_pos_emb = rotary_pos_emb.reshape(seq_len, -1)
cos, sin = self.cal_cos_sin(rotary_pos_emb)
# transformers
x = x.unsqueeze(1)
for layer_num, blk in enumerate(self.blocks):
if layer_num in self.fullatt_block_indexes:
cu_seqlens_now = cu_seqlens
else:
cu_seqlens_now = cu_window_seqlens
x = blk(x, cu_seqlens=cu_seqlens_now, cos=cos, sin=sin)
# adapter
x = self.merger(x)
reverse_indices = torch.argsort(window_index)
x = x[reverse_indices, :]
return x
@MULTIMODAL_REGISTRY.register_processor(
Qwen2_5_VLMultiModalProcessor,
info=Qwen2_5_VLProcessingInfo,
dummy_inputs=Qwen2_5_VLDummyInputsBuilder)
class AscendQwen2_5_VLForConditionalGeneration(
Qwen2_5_VLForConditionalGeneration):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__(vllm_config=vllm_config, prefix=prefix)
config: Qwen2_5_VLConfig = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
self.visual = AscendQwen2_5_VisionTransformer(
vision_config=config.vision_config,
norm_eps=getattr(config, "rms_norm_eps", 1e-6),
quant_config=self._maybe_ignore_quant_config(quant_config),
prefix=maybe_prefix(prefix, "visual"),
)
def _process_image_input(self, image_input) -> tuple[torch.Tensor, ...]:
grid_thw = image_input["image_grid_thw"]
assert grid_thw.ndim == 2
if image_input["type"] == "image_embeds":
image_embeds = image_input["image_embeds"].type(self.visual.dtype)
else:
pixel_values = image_input["pixel_values"].type(self.visual.dtype)
image_embeds = self.visual(pixel_values, grid_thw=grid_thw)
# Split concatenated embeddings for each image item.
merge_size = self.visual.spatial_merge_size
sizes = grid_thw.prod(-1) // merge_size // merge_size
return image_embeds.split(sizes.tolist())
def _process_video_input(self, video_input) -> tuple[torch.Tensor, ...]:
grid_thw = video_input["video_grid_thw"]
assert grid_thw.ndim == 2
if video_input["type"] == "video_embeds":
video_embeds = video_input["video_embeds"].type(self.visual.dtype)
else:
pixel_values_videos = video_input["pixel_values_videos"].type(
self.visual.dtype)
video_embeds = self.visual(pixel_values_videos, grid_thw=grid_thw)
# Split concatenated embeddings for each video item.
merge_size = self.visual.spatial_merge_size
sizes = grid_thw.prod(-1) // merge_size // merge_size
return video_embeds.split(sizes.tolist())