mirror of
https://github.com/vllm-project/vllm-ascend.git
synced 2025-10-20 13:43:53 +08:00
What this PR does / why we need it? 1.Record expert map without dynamic eplb. 2.Add export PYTHONOPTIMIZE=1 when using dynamic eplb. 3.change eplb doc Does this PR introduce any user-facing change? How was this patch tested? Qwen3_moe in A3. - vLLM version: v0.11.0 --------- Signed-off-by: offline0806 <3337230449@qq.com> Co-authored-by: offline0806 <3337230449@qq.com>
403 lines
18 KiB
Python
403 lines
18 KiB
Python
#
|
|
# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved.
|
|
# This file is a part of the vllm-ascend project.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
|
|
from typing import Any, Callable, Dict, Optional
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch_npu
|
|
from vllm.config import get_current_vllm_config
|
|
from vllm.distributed import get_ep_group
|
|
from vllm.forward_context import get_forward_context
|
|
|
|
from vllm_ascend.ascend_config import get_ascend_config
|
|
from vllm_ascend.distributed.parallel_state import get_mc2_group
|
|
from vllm_ascend.ops.moe.experts_selector import select_experts
|
|
from vllm_ascend.utils import ACL_FORMAT_FRACTAL_NZ, is_enable_nz
|
|
|
|
|
|
class AscendW4A8DynamicLinearMethod:
|
|
"""Linear method for Ascend W4A8_DYNAMIC
|
|
"""
|
|
|
|
def __init__(self):
|
|
self.transpose_weight = True
|
|
try:
|
|
self.group_size = get_current_vllm_config(
|
|
).quant_config.quant_description.get("group_size", 256)
|
|
except AttributeError:
|
|
self.group_size = 256
|
|
|
|
@staticmethod
|
|
def get_weight(input_size: int, output_size: int,
|
|
params_dtype: torch.dtype) -> Dict[str, Any]:
|
|
params_dict = {
|
|
"weight": torch.empty(output_size, input_size, dtype=torch.int8)
|
|
}
|
|
return params_dict
|
|
|
|
@staticmethod
|
|
def get_pertensor_param(params_dtype: torch.dtype) -> Dict[str, Any]:
|
|
return {}
|
|
|
|
@staticmethod
|
|
def get_perchannel_param(output_size: int,
|
|
params_dtype: torch.dtype) -> Dict[str, Any]:
|
|
return {}
|
|
|
|
def get_pergroup_param(self, input_size: int, output_size: int,
|
|
params_dtype: torch.dtype) -> Dict[str, Any]:
|
|
params_dict = {}
|
|
params_dict["weight_scale"] = torch.empty(output_size,
|
|
1,
|
|
dtype=params_dtype)
|
|
params_dict["weight_offset"] = torch.empty(output_size,
|
|
1,
|
|
dtype=params_dtype)
|
|
params_dict["weight_scale_second"] = torch.empty(output_size,
|
|
input_size //
|
|
self.group_size,
|
|
dtype=params_dtype)
|
|
params_dict["weight_offset_second"] = torch.empty(output_size,
|
|
input_size //
|
|
self.group_size,
|
|
dtype=params_dtype)
|
|
return params_dict
|
|
|
|
@staticmethod
|
|
def process_scale_second(weight: torch.Tensor, scale: torch.Tensor,
|
|
per_group_scale: torch.Tensor):
|
|
k, n = weight.shape
|
|
group_num, n = per_group_scale.shape
|
|
weight_high = weight.to(torch.float32).reshape(
|
|
group_num, -1, n) * per_group_scale.reshape(group_num, 1, n)
|
|
weight_high = weight_high.reshape(k, n)
|
|
bias = 8 * (weight_high.to(torch.float32) * scale).sum(dim=0)
|
|
antiquant_scale = (scale * per_group_scale).reshape(group_num, n)
|
|
return antiquant_scale.npu(), bias
|
|
|
|
def apply(
|
|
self,
|
|
layer: torch.nn.Module,
|
|
x: torch.Tensor,
|
|
bias: Optional[torch.Tensor] = None,
|
|
tp_rank: Optional[int] = None,
|
|
) -> torch.Tensor:
|
|
return torch_npu.npu_weight_quant_batchmatmul(
|
|
x,
|
|
layer.weight,
|
|
antiquant_scale=layer.weight_scale_second.to(x.dtype),
|
|
antiquant_group_size=self.group_size,
|
|
)
|
|
|
|
def process_weights_after_loading(self, layer: torch.nn.Module):
|
|
if self.transpose_weight:
|
|
layer.weight.data = layer.weight.data.transpose(0, 1).contiguous()
|
|
layer.weight_scale.data = layer.weight_scale.data.flatten().to(
|
|
torch.float32)
|
|
layer.weight_offset.data = layer.weight_offset.data.flatten()
|
|
layer.weight_scale_second.data, scale_bias = self.process_scale_second(
|
|
layer.weight.data,
|
|
layer.weight_scale.data,
|
|
layer.weight_scale_second.data.transpose(0, 1).contiguous(),
|
|
)
|
|
param = torch.nn.Parameter(scale_bias, requires_grad=False)
|
|
layer.register_parameter("weight_scale_bias", param)
|
|
layer.weight.data = torch_npu.npu_convert_weight_to_int4pack(
|
|
layer.weight.data.to(torch.int32))
|
|
|
|
|
|
class AscendW4A8DynamicFusedMoEMethod:
|
|
"""FusedMoe method for Ascend W4A8_DYNAMIC.
|
|
"""
|
|
|
|
def __init__(self):
|
|
self.transpose_weight = True
|
|
|
|
self.ep_group = get_ep_group()
|
|
|
|
vllm_config = get_current_vllm_config()
|
|
self.group_size = vllm_config.quant_config.quant_description.get(
|
|
"group_size", 256)
|
|
# NOTE: the weights are quantized from bf16 to int4 through a per-channel quantization process
|
|
self.is_per_channel_weight = self.group_size == 0
|
|
quant_version = vllm_config.quant_config.quant_description.get(
|
|
"version", "0")
|
|
# NOTE: new quantize weights: 2 int4 pack into int8
|
|
self.new_quant_version = quant_version == "1.0.0"
|
|
self.tp_size = 1 if vllm_config.parallel_config.enable_expert_parallel else self.ep_group.world_size
|
|
ascend_config = get_ascend_config()
|
|
self.dynamic_eplb = ascend_config.dynamic_eplb or ascend_config.expert_map_record_path
|
|
if self.new_quant_version and self.tp_size > 16:
|
|
raise ValueError(
|
|
"The current weight does not support moe part tp>16.")
|
|
|
|
try:
|
|
device_group = get_mc2_group().device_group
|
|
# TODO: Try local_rank = ep_group.rank_in_group
|
|
local_rank = torch.distributed.get_rank(group=device_group)
|
|
backend = device_group._get_backend(torch.device("npu"))
|
|
self.moe_all_to_all_group_name = backend.get_hccl_comm_name(
|
|
local_rank)
|
|
except AttributeError:
|
|
self.moe_all_to_all_group_name = ""
|
|
|
|
def get_weight(self, num_experts: int,
|
|
intermediate_size_per_partition: int, hidden_sizes: int,
|
|
params_dtype: torch.dtype) -> Dict[str, Any]:
|
|
param_dict = {}
|
|
if self.new_quant_version:
|
|
w13_output_size = intermediate_size_per_partition
|
|
w2_output_size = hidden_sizes // 2
|
|
else:
|
|
w13_output_size = 2 * intermediate_size_per_partition
|
|
w2_output_size = hidden_sizes
|
|
|
|
param_dict["w13_weight"] = torch.empty(num_experts,
|
|
w13_output_size,
|
|
hidden_sizes,
|
|
dtype=torch.int8)
|
|
param_dict["w2_weight"] = torch.empty(num_experts,
|
|
w2_output_size,
|
|
intermediate_size_per_partition,
|
|
dtype=torch.int8)
|
|
return param_dict
|
|
|
|
def get_dynamic_quant_param(self, num_experts: int,
|
|
intermediate_size_per_partition: int,
|
|
hidden_sizes: int,
|
|
params_dtype: torch.dtype) -> Dict[str, Any]:
|
|
param_dict = {}
|
|
param_dict["w13_weight_scale"] = torch.empty(
|
|
num_experts,
|
|
2 * intermediate_size_per_partition,
|
|
1,
|
|
dtype=torch.float32)
|
|
|
|
param_dict["w13_weight_offset"] = torch.empty(
|
|
num_experts,
|
|
2 * intermediate_size_per_partition,
|
|
1,
|
|
dtype=torch.float32)
|
|
|
|
param_dict["w2_weight_scale"] = torch.empty(num_experts,
|
|
hidden_sizes,
|
|
1,
|
|
dtype=torch.float32)
|
|
param_dict["w2_weight_offset"] = torch.empty(num_experts,
|
|
hidden_sizes,
|
|
1,
|
|
dtype=torch.float32)
|
|
if not self.is_per_channel_weight:
|
|
param_dict["w13_weight_scale_second"] = torch.empty(
|
|
num_experts,
|
|
2 * intermediate_size_per_partition,
|
|
hidden_sizes // self.group_size,
|
|
dtype=torch.float32)
|
|
param_dict["w13_weight_offset_second"] = torch.empty(
|
|
num_experts,
|
|
2 * intermediate_size_per_partition,
|
|
hidden_sizes // self.group_size,
|
|
dtype=torch.float32)
|
|
|
|
param_dict["w2_weight_scale_second"] = torch.empty(
|
|
num_experts,
|
|
hidden_sizes,
|
|
intermediate_size_per_partition // self.group_size,
|
|
dtype=torch.float32)
|
|
param_dict["w2_weight_offset_second"] = torch.empty(
|
|
num_experts,
|
|
hidden_sizes,
|
|
intermediate_size_per_partition // self.group_size,
|
|
dtype=torch.float32)
|
|
|
|
if self.new_quant_version:
|
|
param_dict["w13_scale_bias"] = torch.empty(
|
|
num_experts,
|
|
2 * intermediate_size_per_partition,
|
|
1,
|
|
dtype=torch.float32)
|
|
param_dict["w2_scale_bias"] = torch.empty(num_experts,
|
|
hidden_sizes,
|
|
16 // self.tp_size,
|
|
dtype=torch.float32)
|
|
|
|
return param_dict
|
|
|
|
def apply(
|
|
self,
|
|
layer: torch.nn.Module,
|
|
x: torch.Tensor,
|
|
router_logits: torch.Tensor,
|
|
top_k: int,
|
|
renormalize: bool,
|
|
use_grouped_topk: bool = False,
|
|
global_num_experts: int = -1,
|
|
expert_map: Optional[torch.Tensor] = None,
|
|
topk_group: Optional[int] = None,
|
|
num_expert_group: Optional[int] = None,
|
|
custom_routing_function: Optional[Callable] = None,
|
|
scoring_func: str = "softmax",
|
|
e_score_correction_bias: Optional[torch.Tensor] = None,
|
|
is_prefill: bool = True,
|
|
enable_force_load_balance: bool = True,
|
|
log2phy: torch.Tensor = None,
|
|
global_redundant_expert_num: int = 0,
|
|
shared_experts: Optional[Any] = None,
|
|
quantized_x_for_share: Optional[Any] = None,
|
|
dynamic_scale_for_share: Optional[Any] = None,
|
|
**kwargs,
|
|
) -> torch.Tensor:
|
|
assert router_logits.shape[
|
|
1] == global_num_experts, "Number of global experts mismatch"
|
|
|
|
# NOTE: now npu_moe_gating_top_k can only support `group_count=256` pattern
|
|
topk_weights, topk_ids = select_experts(
|
|
hidden_states=x,
|
|
router_logits=router_logits,
|
|
top_k=top_k,
|
|
use_grouped_topk=use_grouped_topk,
|
|
renormalize=renormalize,
|
|
topk_group=topk_group,
|
|
num_expert_group=num_expert_group,
|
|
custom_routing_function=custom_routing_function,
|
|
scoring_func=scoring_func,
|
|
e_score_correction_bias=e_score_correction_bias,
|
|
global_num_experts=global_num_experts)
|
|
|
|
# this is a naive implementation for experts load balance so as
|
|
# to avoid accumulating too much tokens on a single rank.
|
|
# currently it is only activated when doing profile runs.
|
|
if enable_force_load_balance:
|
|
topk_ids = torch.randint_like(topk_ids, 0, global_num_experts)
|
|
|
|
topk_weights = topk_weights.to(x.dtype)
|
|
|
|
moe_comm_method = get_forward_context().moe_comm_method
|
|
return moe_comm_method.fused_experts(
|
|
hidden_states=x,
|
|
w1=layer.w13_weight,
|
|
w2=layer.w2_weight,
|
|
w1_scale=layer.w13_weight_scale,
|
|
w2_scale=layer.w2_weight_scale,
|
|
w1_scale_bias=layer.w13_scale_bias,
|
|
w2_scale_bias=layer.w2_scale_bias,
|
|
topk_weights=topk_weights,
|
|
topk_ids=topk_ids,
|
|
use_int4_w4a8=True,
|
|
expert_map=expert_map,
|
|
log2phy=log2phy,
|
|
global_redundant_expert_num=global_redundant_expert_num,
|
|
shared_experts=shared_experts,
|
|
quantized_x_for_share=quantized_x_for_share,
|
|
dynamic_scale_for_share=dynamic_scale_for_share,
|
|
dynamic_eplb=self.dynamic_eplb)
|
|
|
|
def process_scale(self, weight: torch.Tensor, scale, per_group_scale):
|
|
scale = scale.transpose(1, 2).contiguous()
|
|
if self.is_per_channel_weight:
|
|
scale_np = scale.cpu().numpy()
|
|
scale_np.dtype = np.uint32
|
|
scale_uint64_tensor = torch.from_numpy(scale_np.astype(
|
|
np.int64)).npu()
|
|
return scale_uint64_tensor, None
|
|
per_group_scale = per_group_scale.transpose(1, 2).contiguous()
|
|
group_num, k, n = weight.shape
|
|
# the weight of the new version is reduced by half by pack n, so it needs to be restored
|
|
if self.new_quant_version:
|
|
n = n * 2
|
|
per_group_scale = per_group_scale.reshape(group_num, -1, n)
|
|
group_num, quantgroup_num, n = per_group_scale.shape
|
|
bias = None
|
|
if not self.new_quant_version:
|
|
weight_high = weight.to(torch.float32).reshape([group_num, quantgroup_num, -1, n]) * \
|
|
per_group_scale.reshape([group_num, quantgroup_num, 1, n])
|
|
weight_high = weight_high.reshape([group_num, k, n])
|
|
bias = 8 * (weight_high.to(torch.float32) * scale).sum(axis=1)
|
|
scale_fp32 = (scale * per_group_scale).to(torch.float16).to(
|
|
torch.float32)
|
|
scale_fp32_np = scale_fp32.cpu().numpy()
|
|
scale_fp32_np.dtype = np.uint32
|
|
sscale_uint64 = np.zeros((group_num, quantgroup_num, n * 2),
|
|
dtype=np.uint32)
|
|
|
|
sscale_uint64[..., ::2] = scale_fp32_np
|
|
|
|
sscale_uint64_buffer = np.frombuffer(sscale_uint64.tobytes(),
|
|
dtype=np.int64).copy()
|
|
sscale_uint64_tensor = torch.from_numpy(sscale_uint64_buffer).reshape(
|
|
group_num, quantgroup_num, n)
|
|
sscale_uint64_tensor = sscale_uint64_tensor.npu()
|
|
return sscale_uint64_tensor, bias
|
|
|
|
def update_bias(self, layer, w13_bias, w2_bias):
|
|
if self.new_quant_version:
|
|
layer.w13_scale_bias.data = layer.w13_scale_bias.data.transpose(
|
|
1, 2).contiguous().sum(axis=1)
|
|
layer.w2_scale_bias.data = layer.w2_scale_bias.data.transpose(
|
|
1, 2).contiguous().sum(axis=1)
|
|
else:
|
|
w13_scale_bias = torch.nn.Parameter(w13_bias, requires_grad=False)
|
|
layer.register_parameter("w13_scale_bias", w13_scale_bias)
|
|
w2_scale_bias = torch.nn.Parameter(w2_bias, requires_grad=False)
|
|
layer.register_parameter("w2_scale_bias", w2_scale_bias)
|
|
|
|
def pack_to_int32(self, weight: torch.Tensor):
|
|
if self.new_quant_version:
|
|
# pack 4 int8(int4*2) to int32, because in pytorch, we need to use int32 to represent int4
|
|
assert weight.shape[
|
|
-1] % 4 == 0, "the last dim of weight needs to be divided by 4"
|
|
return weight.view(torch.int32).contiguous()
|
|
else:
|
|
return torch_npu.npu_quantize(weight.to(torch.float32),
|
|
torch.tensor([1.]).npu(), None,
|
|
torch.quint4x2, -1, False)
|
|
|
|
def process_weights_after_loading(self, layer):
|
|
if self.transpose_weight:
|
|
layer.w13_weight.data = layer.w13_weight.data.transpose(
|
|
1, 2).contiguous()
|
|
layer.w2_weight.data = layer.w2_weight.data.transpose(
|
|
1, 2).contiguous()
|
|
|
|
w13_weight_scale_second = layer.w13_weight_scale_second.data if hasattr(
|
|
layer, "w13_weight_scale_second") else None
|
|
w2_weight_scale_second = layer.w2_weight_scale_second.data if hasattr(
|
|
layer, "w2_weight_scale_second") else None
|
|
layer.w13_weight_scale.data, w13_bias = self.process_scale(
|
|
layer.w13_weight, layer.w13_weight_scale.data,
|
|
w13_weight_scale_second)
|
|
layer.w2_weight_scale.data, w2_bias = self.process_scale(
|
|
layer.w2_weight, layer.w2_weight_scale.data,
|
|
w2_weight_scale_second)
|
|
if hasattr(layer, "w13_weight_scale_second"):
|
|
# scale_second is no longer used, release this part of the memory
|
|
del layer.w13_weight_scale_second
|
|
del layer.w2_weight_scale_second
|
|
del layer.w13_weight_offset_second
|
|
del layer.w2_weight_offset_second
|
|
|
|
self.update_bias(layer, w13_bias, w2_bias)
|
|
|
|
if is_enable_nz():
|
|
layer.w13_weight.data = torch_npu.npu_format_cast(
|
|
layer.w13_weight.data, ACL_FORMAT_FRACTAL_NZ)
|
|
layer.w2_weight.data = torch_npu.npu_format_cast(
|
|
layer.w2_weight.data, ACL_FORMAT_FRACTAL_NZ)
|
|
layer.w13_weight.data = self.pack_to_int32(layer.w13_weight.data)
|
|
layer.w2_weight.data = self.pack_to_int32(layer.w2_weight.data)
|